Shaheen M. Sarkar , Md. Lutfor Rahman , Kamrul Hasan , Md. Maksudur Rahman Khan , Mohammed Salim Akhter , Emmet J. O’Reilly
{"title":"室温下用于正烷基化的二氧化硅支撑席夫基钯纳米催化剂","authors":"Shaheen M. Sarkar , Md. Lutfor Rahman , Kamrul Hasan , Md. Maksudur Rahman Khan , Mohammed Salim Akhter , Emmet J. O’Reilly","doi":"10.1016/j.jscs.2024.101916","DOIUrl":null,"url":null,"abstract":"<div><p>This works documents a new silica gel-supported nanocatalyst (<strong>Si@NSBPdNPs 3</strong>) with low Pd loadings for <em>n</em>-alkylation reactions at room temperature. Post synthesis characterisation using SEM-EDX and ICP techniques provided a quantitative assessment of palladium species. Additionally, TEM analysis unveiled an average palladium nanoparticle size of 5.87 ± 0.2 nm. In-depth X-ray Photoelectron Spectroscopy (XPS) analysis revealed its predominant composition as Pd(0) complexed to a Schiff base ligand on low cost silica matrix. The nanocatalyst exhibited high efficacy in the catalysis of <em>n</em>-alkylation (Michael addition) reactions with various <em>α,β</em>-unsaturated Michael acceptors, yielding the corresponding <em>n</em>-alkyl products at room temperature with exceptional yields. Notably, the catalyst exhibited good stability and could be easily separated from the reaction mixture. Moreover, the catalyst displayed recyclability potential, maintaining its original catalytic efficacy for up to seven cycles without any discernible loss.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 5","pages":"Article 101916"},"PeriodicalIF":5.8000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S131961032400111X/pdfft?md5=bd5cdf51d84e0ffe78eb01061f61f36f&pid=1-s2.0-S131961032400111X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Silica supported Schiff-based palladium nanocatalyst for n-alkylation at room temperature\",\"authors\":\"Shaheen M. Sarkar , Md. Lutfor Rahman , Kamrul Hasan , Md. Maksudur Rahman Khan , Mohammed Salim Akhter , Emmet J. O’Reilly\",\"doi\":\"10.1016/j.jscs.2024.101916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This works documents a new silica gel-supported nanocatalyst (<strong>Si@NSBPdNPs 3</strong>) with low Pd loadings for <em>n</em>-alkylation reactions at room temperature. Post synthesis characterisation using SEM-EDX and ICP techniques provided a quantitative assessment of palladium species. Additionally, TEM analysis unveiled an average palladium nanoparticle size of 5.87 ± 0.2 nm. In-depth X-ray Photoelectron Spectroscopy (XPS) analysis revealed its predominant composition as Pd(0) complexed to a Schiff base ligand on low cost silica matrix. The nanocatalyst exhibited high efficacy in the catalysis of <em>n</em>-alkylation (Michael addition) reactions with various <em>α,β</em>-unsaturated Michael acceptors, yielding the corresponding <em>n</em>-alkyl products at room temperature with exceptional yields. Notably, the catalyst exhibited good stability and could be easily separated from the reaction mixture. Moreover, the catalyst displayed recyclability potential, maintaining its original catalytic efficacy for up to seven cycles without any discernible loss.</p></div>\",\"PeriodicalId\":16974,\"journal\":{\"name\":\"Journal of Saudi Chemical Society\",\"volume\":\"28 5\",\"pages\":\"Article 101916\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S131961032400111X/pdfft?md5=bd5cdf51d84e0ffe78eb01061f61f36f&pid=1-s2.0-S131961032400111X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Saudi Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S131961032400111X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S131961032400111X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Silica supported Schiff-based palladium nanocatalyst for n-alkylation at room temperature
This works documents a new silica gel-supported nanocatalyst (Si@NSBPdNPs 3) with low Pd loadings for n-alkylation reactions at room temperature. Post synthesis characterisation using SEM-EDX and ICP techniques provided a quantitative assessment of palladium species. Additionally, TEM analysis unveiled an average palladium nanoparticle size of 5.87 ± 0.2 nm. In-depth X-ray Photoelectron Spectroscopy (XPS) analysis revealed its predominant composition as Pd(0) complexed to a Schiff base ligand on low cost silica matrix. The nanocatalyst exhibited high efficacy in the catalysis of n-alkylation (Michael addition) reactions with various α,β-unsaturated Michael acceptors, yielding the corresponding n-alkyl products at room temperature with exceptional yields. Notably, the catalyst exhibited good stability and could be easily separated from the reaction mixture. Moreover, the catalyst displayed recyclability potential, maintaining its original catalytic efficacy for up to seven cycles without any discernible loss.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.