Weifeng Li , Yao Xue , Xinbo Feng , Jie Liu , Fumin Zhang , Shun Rao , Tianyao Zhang , Zhenhai Gao , Zekai Du , Chang Ni , Jiawei Shi , Hewu Wang , Changru Rong , Deping Wang
{"title":"加强对热失控期间锂离子牵引电池颗粒排放的了解:概述与挑战","authors":"Weifeng Li , Yao Xue , Xinbo Feng , Jie Liu , Fumin Zhang , Shun Rao , Tianyao Zhang , Zhenhai Gao , Zekai Du , Chang Ni , Jiawei Shi , Hewu Wang , Changru Rong , Deping Wang","doi":"10.1016/j.etran.2024.100354","DOIUrl":null,"url":null,"abstract":"<div><p>Particle emissions released by lithium-ion traction batteries (LIBs) during thermal runaway (TR) are considered to be one of the fire hazard sources for new energy vehicles. Moreover, the particle emissions may persist in the environment and cause damage even after a fire is extinguished. Therefore, the formation mechanisms of the particle emissions from LIBs during TR are summarized firstly in this review. Effects of influencing factors on particle emission characteristics and biotoxicity are also explored. Furthermore, simulation models of LIB particle emissions are summarized. Particle emissions calculated for 2021 to 2023 are presented, and particle emissions from 2024 to 2030 are predicted. Finally, the existing research results and the problems with LIB particle emissions are summarized, and future research challenges and directions are prospected. This review aims to evoke interest in particle emissions from lithium-ion traction batteries during TR and provide a reference for suppressing and managing particle emissions to improve the safety of LIBs and mitigate environmental hazards.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"22 ","pages":"Article 100354"},"PeriodicalIF":15.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing understanding of particle emissions from lithium-ion traction batteries during thermal runaway: An overview and challenges\",\"authors\":\"Weifeng Li , Yao Xue , Xinbo Feng , Jie Liu , Fumin Zhang , Shun Rao , Tianyao Zhang , Zhenhai Gao , Zekai Du , Chang Ni , Jiawei Shi , Hewu Wang , Changru Rong , Deping Wang\",\"doi\":\"10.1016/j.etran.2024.100354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Particle emissions released by lithium-ion traction batteries (LIBs) during thermal runaway (TR) are considered to be one of the fire hazard sources for new energy vehicles. Moreover, the particle emissions may persist in the environment and cause damage even after a fire is extinguished. Therefore, the formation mechanisms of the particle emissions from LIBs during TR are summarized firstly in this review. Effects of influencing factors on particle emission characteristics and biotoxicity are also explored. Furthermore, simulation models of LIB particle emissions are summarized. Particle emissions calculated for 2021 to 2023 are presented, and particle emissions from 2024 to 2030 are predicted. Finally, the existing research results and the problems with LIB particle emissions are summarized, and future research challenges and directions are prospected. This review aims to evoke interest in particle emissions from lithium-ion traction batteries during TR and provide a reference for suppressing and managing particle emissions to improve the safety of LIBs and mitigate environmental hazards.</p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"22 \",\"pages\":\"Article 100354\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116824000444\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000444","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Enhancing understanding of particle emissions from lithium-ion traction batteries during thermal runaway: An overview and challenges
Particle emissions released by lithium-ion traction batteries (LIBs) during thermal runaway (TR) are considered to be one of the fire hazard sources for new energy vehicles. Moreover, the particle emissions may persist in the environment and cause damage even after a fire is extinguished. Therefore, the formation mechanisms of the particle emissions from LIBs during TR are summarized firstly in this review. Effects of influencing factors on particle emission characteristics and biotoxicity are also explored. Furthermore, simulation models of LIB particle emissions are summarized. Particle emissions calculated for 2021 to 2023 are presented, and particle emissions from 2024 to 2030 are predicted. Finally, the existing research results and the problems with LIB particle emissions are summarized, and future research challenges and directions are prospected. This review aims to evoke interest in particle emissions from lithium-ion traction batteries during TR and provide a reference for suppressing and managing particle emissions to improve the safety of LIBs and mitigate environmental hazards.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.