地基沉降条件下高速列车在过渡带上运行的乘车安全预测

IF 4 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Advances in Engineering Software Pub Date : 2024-08-16 DOI:10.1016/j.advengsoft.2024.103757
Borong Peng , Xuhui He , Lei Xu , Zheng Li , Yunlong Guo
{"title":"地基沉降条件下高速列车在过渡带上运行的乘车安全预测","authors":"Borong Peng ,&nbsp;Xuhui He ,&nbsp;Lei Xu ,&nbsp;Zheng Li ,&nbsp;Yunlong Guo","doi":"10.1016/j.advengsoft.2024.103757","DOIUrl":null,"url":null,"abstract":"<div><p>The settlement of piers and subgrade bending deformation are widely recognized as common issues in the transition zones of high-speed railway bridges. This study aims to investigate the settlement behavior within these transition zones and its impact on the dynamic interaction between trains and the track. To achieve this, a vehicle-track-transition zone mapping relationship model is developed to analyze both the settlement behavior and the resulting dynamic response characteristics. The study employs the finite element method and multi-body dynamics to construct the simulation model. Settlement effects are simulated using the Newton-Raphson iterative method, with the additional rail deformation caused by foundation settlement serving as the excitation for the vehicle-track-transition zone dynamic interaction system. In the numerical analysis, the dynamic effects of three key factors—train speed, transition zone length, and the amplitude of foundation settlement—are examined based on the performance of the vehicle-track-transition zone interaction. The time-frequency technique is utilized to comprehensively reveal and clarify the spatial-frequency characteristics of system responses influenced by settlement excitation. Moreover, the relationship between the safety-based settlement threshold and these three factors is calibrated.</p></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"197 ","pages":"Article 103757"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0965997824001649/pdfft?md5=2e87ba2b926bd786bcd7830af2d09ec4&pid=1-s2.0-S0965997824001649-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Riding safety prediction of a high-speed train running on transition zone under foundation settlement\",\"authors\":\"Borong Peng ,&nbsp;Xuhui He ,&nbsp;Lei Xu ,&nbsp;Zheng Li ,&nbsp;Yunlong Guo\",\"doi\":\"10.1016/j.advengsoft.2024.103757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The settlement of piers and subgrade bending deformation are widely recognized as common issues in the transition zones of high-speed railway bridges. This study aims to investigate the settlement behavior within these transition zones and its impact on the dynamic interaction between trains and the track. To achieve this, a vehicle-track-transition zone mapping relationship model is developed to analyze both the settlement behavior and the resulting dynamic response characteristics. The study employs the finite element method and multi-body dynamics to construct the simulation model. Settlement effects are simulated using the Newton-Raphson iterative method, with the additional rail deformation caused by foundation settlement serving as the excitation for the vehicle-track-transition zone dynamic interaction system. In the numerical analysis, the dynamic effects of three key factors—train speed, transition zone length, and the amplitude of foundation settlement—are examined based on the performance of the vehicle-track-transition zone interaction. The time-frequency technique is utilized to comprehensively reveal and clarify the spatial-frequency characteristics of system responses influenced by settlement excitation. Moreover, the relationship between the safety-based settlement threshold and these three factors is calibrated.</p></div>\",\"PeriodicalId\":50866,\"journal\":{\"name\":\"Advances in Engineering Software\",\"volume\":\"197 \",\"pages\":\"Article 103757\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0965997824001649/pdfft?md5=2e87ba2b926bd786bcd7830af2d09ec4&pid=1-s2.0-S0965997824001649-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965997824001649\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824001649","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

桥墩沉降和路基弯曲变形是高速铁路桥梁过渡区的常见问题。本研究旨在研究这些过渡区内的沉降行为及其对列车与轨道之间动态相互作用的影响。为此,我们建立了一个车辆-轨道-过渡区映射关系模型,以分析沉降行为和由此产生的动态响应特性。研究采用有限元法和多体动力学来构建仿真模型。沉降效应采用牛顿-拉斐森迭代法进行模拟,地基沉降引起的附加轨道变形作为车辆-轨道-过渡区动态交互系统的激励。在数值分析中,根据车辆-轨道-过渡区相互作用的性能,研究了三个关键因素(列车速度、过渡区长度和地基沉降幅度)的动态影响。利用时频技术全面揭示并阐明了受沉降激励影响的系统响应的空间频率特征。此外,还校准了基于安全的沉降阈值与这三个因素之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Riding safety prediction of a high-speed train running on transition zone under foundation settlement

The settlement of piers and subgrade bending deformation are widely recognized as common issues in the transition zones of high-speed railway bridges. This study aims to investigate the settlement behavior within these transition zones and its impact on the dynamic interaction between trains and the track. To achieve this, a vehicle-track-transition zone mapping relationship model is developed to analyze both the settlement behavior and the resulting dynamic response characteristics. The study employs the finite element method and multi-body dynamics to construct the simulation model. Settlement effects are simulated using the Newton-Raphson iterative method, with the additional rail deformation caused by foundation settlement serving as the excitation for the vehicle-track-transition zone dynamic interaction system. In the numerical analysis, the dynamic effects of three key factors—train speed, transition zone length, and the amplitude of foundation settlement—are examined based on the performance of the vehicle-track-transition zone interaction. The time-frequency technique is utilized to comprehensively reveal and clarify the spatial-frequency characteristics of system responses influenced by settlement excitation. Moreover, the relationship between the safety-based settlement threshold and these three factors is calibrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
期刊最新文献
A multi-field coupled data-driven surrogate approach for multiphysical damage diagnostic of energy harvesting composite plates An application of machine learning for geometric optimization of a dual-throat bent nozzle Approximate analytical/numerical solutions for the seismic response of rigid walls retaining a transversely isotropic poroelastic soil Intermediately discretized extended α-level-optimization – An advanced fuzzy analysis approach HMSimNet: A hexahedral mesh simplification network model for preserving analysis accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1