Mingyan Zhou, Catherine Li, Frances L. Byrne, Calum S. Vancuylenburg, Ellen M. Olzomer, Adam Hargreaves, Lindsay E. Wu, Nicholas A. Shackel, Webster L. Santos, Kyle L. Hoehn
{"title":"MGL-3196 和 BAM15 联合疗法对脂肪肝小鼠模型的益处。","authors":"Mingyan Zhou, Catherine Li, Frances L. Byrne, Calum S. Vancuylenburg, Ellen M. Olzomer, Adam Hargreaves, Lindsay E. Wu, Nicholas A. Shackel, Webster L. Santos, Kyle L. Hoehn","doi":"10.1111/apha.14217","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Aim</h3>\n \n <p>Metabolic dysfunction-associated steatohepatitis (MASH) is a metabolic disorder with limited treatment options. The thyroid hormone receptor (THR)-β agonist resmetirom/MGL-3196 (MGL) increases liver fat oxidation and has been approved for treating adult MASH. However, over 60% of patients receiving MGL treatment do not achieve MASH resolution. Therefore, we investigated the potential for combination therapy of MGL with the mitochondrial uncoupler BAM15 to improve fatty liver disease outcomes in the GAN mouse model of MASH.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>C57BL/6J male mice were fed GAN diet for 38 weeks before stratification and randomization to treatments including MGL, BAM15, MGL + BAM15, or no drug control for 8 weeks. Treatments were admixed in diet and mice were pair-fed to control for drug intake. Treatment effectiveness was assessed by body weight, body composition, energy expenditure, glucose tolerance, tissue lipid content, and histological analyses.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>MGL + BAM15 treatment resulted in better efficacy versus GAN control mice than either monotherapy in the context of energy expenditure, liver fat loss, glucose control, and fatty liver disease activity score. Improvements in ALT, liver mass, and plasma cholesterol were primarily driven by MGL, while improvements in body fat were primarily driven by BAM15. No treatments altered liver fibrosis.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>MGL + BAM15 treatment had overall better efficacy to improve metabolic outcomes in mice fed GAN diet than either monotherapy alone. These data warrant further investigation into combination therapies of THR-β agonists and mitochondrial uncouplers for the potential treatment of disorders related to fatty liver, obesity, and insulin resistance.</p>\n </section>\n </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"240 10","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.14217","citationCount":"0","resultStr":"{\"title\":\"Beneficial effects of MGL-3196 and BAM15 combination in a mouse model of fatty liver disease\",\"authors\":\"Mingyan Zhou, Catherine Li, Frances L. Byrne, Calum S. Vancuylenburg, Ellen M. Olzomer, Adam Hargreaves, Lindsay E. Wu, Nicholas A. Shackel, Webster L. Santos, Kyle L. Hoehn\",\"doi\":\"10.1111/apha.14217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Aim</h3>\\n \\n <p>Metabolic dysfunction-associated steatohepatitis (MASH) is a metabolic disorder with limited treatment options. The thyroid hormone receptor (THR)-β agonist resmetirom/MGL-3196 (MGL) increases liver fat oxidation and has been approved for treating adult MASH. However, over 60% of patients receiving MGL treatment do not achieve MASH resolution. Therefore, we investigated the potential for combination therapy of MGL with the mitochondrial uncoupler BAM15 to improve fatty liver disease outcomes in the GAN mouse model of MASH.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>C57BL/6J male mice were fed GAN diet for 38 weeks before stratification and randomization to treatments including MGL, BAM15, MGL + BAM15, or no drug control for 8 weeks. Treatments were admixed in diet and mice were pair-fed to control for drug intake. Treatment effectiveness was assessed by body weight, body composition, energy expenditure, glucose tolerance, tissue lipid content, and histological analyses.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>MGL + BAM15 treatment resulted in better efficacy versus GAN control mice than either monotherapy in the context of energy expenditure, liver fat loss, glucose control, and fatty liver disease activity score. Improvements in ALT, liver mass, and plasma cholesterol were primarily driven by MGL, while improvements in body fat were primarily driven by BAM15. No treatments altered liver fibrosis.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>MGL + BAM15 treatment had overall better efficacy to improve metabolic outcomes in mice fed GAN diet than either monotherapy alone. These data warrant further investigation into combination therapies of THR-β agonists and mitochondrial uncouplers for the potential treatment of disorders related to fatty liver, obesity, and insulin resistance.</p>\\n </section>\\n </div>\",\"PeriodicalId\":107,\"journal\":{\"name\":\"Acta Physiologica\",\"volume\":\"240 10\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.14217\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/apha.14217\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.14217","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Beneficial effects of MGL-3196 and BAM15 combination in a mouse model of fatty liver disease
Background and Aim
Metabolic dysfunction-associated steatohepatitis (MASH) is a metabolic disorder with limited treatment options. The thyroid hormone receptor (THR)-β agonist resmetirom/MGL-3196 (MGL) increases liver fat oxidation and has been approved for treating adult MASH. However, over 60% of patients receiving MGL treatment do not achieve MASH resolution. Therefore, we investigated the potential for combination therapy of MGL with the mitochondrial uncoupler BAM15 to improve fatty liver disease outcomes in the GAN mouse model of MASH.
Methods
C57BL/6J male mice were fed GAN diet for 38 weeks before stratification and randomization to treatments including MGL, BAM15, MGL + BAM15, or no drug control for 8 weeks. Treatments were admixed in diet and mice were pair-fed to control for drug intake. Treatment effectiveness was assessed by body weight, body composition, energy expenditure, glucose tolerance, tissue lipid content, and histological analyses.
Results
MGL + BAM15 treatment resulted in better efficacy versus GAN control mice than either monotherapy in the context of energy expenditure, liver fat loss, glucose control, and fatty liver disease activity score. Improvements in ALT, liver mass, and plasma cholesterol were primarily driven by MGL, while improvements in body fat were primarily driven by BAM15. No treatments altered liver fibrosis.
Conclusions
MGL + BAM15 treatment had overall better efficacy to improve metabolic outcomes in mice fed GAN diet than either monotherapy alone. These data warrant further investigation into combination therapies of THR-β agonists and mitochondrial uncouplers for the potential treatment of disorders related to fatty liver, obesity, and insulin resistance.
期刊介绍:
Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.