远红外线辐射及其治疗参数:未来再生医学的最佳选择?

IF 9.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pharmacological research Pub Date : 2024-08-14 DOI:10.1016/j.phrs.2024.107349
{"title":"远红外线辐射及其治疗参数:未来再生医学的最佳选择?","authors":"","doi":"10.1016/j.phrs.2024.107349","DOIUrl":null,"url":null,"abstract":"<div><p>In future regenerative medicine, far-infrared radiation (FIR) may be an essential component of optical therapy. Many studies have confirmed or validated the efficacy and safety of FIR in various diseases, benefiting from new insights into FIR mechanisms and the excellent performance of many applications. However, the lack of consensus on the biological effects and therapeutic parameters of FIR limits its practical applications in the clinic. In this review, the definition, characteristics, and underlying principles of the FIR are systematically illustrated. We outline the therapeutic parameters of FIR, including the wavelength range, power density, irradiation time, and distance. In addition, the biological effects, potential molecular mechanisms, and preclinical and clinical applications of FIR are discussed. Furthermore, the future development and applications of FIR are described in this review. By applying optimal therapeutic parameters, FIR can influence various cells, animal models, and patients, eliciting diverse underlying mechanisms and offering therapeutic potential for many diseases. FIR could represent a superior alternative with broad prospects for application in future regenerative medicine.</p></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1043661824002949/pdfft?md5=d7d88b51f408eb2af2388473c81d30f5&pid=1-s2.0-S1043661824002949-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Far-infrared radiation and its therapeutic parameters: A superior alternative for future regenerative medicine?\",\"authors\":\"\",\"doi\":\"10.1016/j.phrs.2024.107349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In future regenerative medicine, far-infrared radiation (FIR) may be an essential component of optical therapy. Many studies have confirmed or validated the efficacy and safety of FIR in various diseases, benefiting from new insights into FIR mechanisms and the excellent performance of many applications. However, the lack of consensus on the biological effects and therapeutic parameters of FIR limits its practical applications in the clinic. In this review, the definition, characteristics, and underlying principles of the FIR are systematically illustrated. We outline the therapeutic parameters of FIR, including the wavelength range, power density, irradiation time, and distance. In addition, the biological effects, potential molecular mechanisms, and preclinical and clinical applications of FIR are discussed. Furthermore, the future development and applications of FIR are described in this review. By applying optimal therapeutic parameters, FIR can influence various cells, animal models, and patients, eliciting diverse underlying mechanisms and offering therapeutic potential for many diseases. FIR could represent a superior alternative with broad prospects for application in future regenerative medicine.</p></div>\",\"PeriodicalId\":19918,\"journal\":{\"name\":\"Pharmacological research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1043661824002949/pdfft?md5=d7d88b51f408eb2af2388473c81d30f5&pid=1-s2.0-S1043661824002949-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043661824002949\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661824002949","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在未来的再生医学中,远红外线(FIR)可能是光学疗法的重要组成部分。许多研究已经证实或验证了远红外线对各种疾病的疗效和安全性,这得益于对远红外线机理的新认识和许多应用的卓越性能。然而,由于对红外热像仪的生物效应和治疗参数缺乏共识,限制了其在临床上的实际应用。在这篇综述中,我们系统地阐述了 FIR 的定义、特点和基本原理。我们概述了 FIR 的治疗参数,包括波长范围、功率密度、照射时间和距离。此外,还讨论了 FIR 的生物效应、潜在分子机制以及临床前和临床应用。此外,本综述还介绍了红外热辐射的未来发展和应用。通过应用最佳治疗参数,红外热像仪可以影响各种细胞、动物模型和患者,激发不同的潜在机制,为许多疾病提供治疗潜力。在未来的再生医学中,红外热像仪可能是一种具有广阔应用前景的优质替代疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Far-infrared radiation and its therapeutic parameters: A superior alternative for future regenerative medicine?

In future regenerative medicine, far-infrared radiation (FIR) may be an essential component of optical therapy. Many studies have confirmed or validated the efficacy and safety of FIR in various diseases, benefiting from new insights into FIR mechanisms and the excellent performance of many applications. However, the lack of consensus on the biological effects and therapeutic parameters of FIR limits its practical applications in the clinic. In this review, the definition, characteristics, and underlying principles of the FIR are systematically illustrated. We outline the therapeutic parameters of FIR, including the wavelength range, power density, irradiation time, and distance. In addition, the biological effects, potential molecular mechanisms, and preclinical and clinical applications of FIR are discussed. Furthermore, the future development and applications of FIR are described in this review. By applying optimal therapeutic parameters, FIR can influence various cells, animal models, and patients, eliciting diverse underlying mechanisms and offering therapeutic potential for many diseases. FIR could represent a superior alternative with broad prospects for application in future regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmacological research
Pharmacological research 医学-药学
CiteScore
18.70
自引率
3.20%
发文量
491
审稿时长
8 days
期刊介绍: Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.
期刊最新文献
Molecular mechanisms underlying hepatoprotective activity of lutein in the context of intestinal failure-associated liver disease Orosomucoid 2 is an endogenous regulator of neuronal mitochondrial biogenesis and promotes functional recovery post-stroke Extracellular vesicles in the HCC microenvironment: Implications for therapy and biomarkers Online ligand screening for cytochrome C from herbal medicines through “four-in-one” measurement A new perspective on liver diseases: Focusing on the mitochondria-associated endoplasmic reticulum membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1