物理系统中基于梯度控制和优化的可微编程

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS Sustainable Energy Grids & Networks Pub Date : 2024-08-13 DOI:10.1016/j.segan.2024.101495
Daniel López-Montero , Patricia Hernando-Sánchez , María Limones-Andrade , Adolfo García-Navarro , Adrián Valverde , Juan Manuel Sánchez Parra , Juan M. Auñón
{"title":"物理系统中基于梯度控制和优化的可微编程","authors":"Daniel López-Montero ,&nbsp;Patricia Hernando-Sánchez ,&nbsp;María Limones-Andrade ,&nbsp;Adolfo García-Navarro ,&nbsp;Adrián Valverde ,&nbsp;Juan Manuel Sánchez Parra ,&nbsp;Juan M. Auñón","doi":"10.1016/j.segan.2024.101495","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an exploration of the application of control theory, particularly utilizing a gradient-based algorithm, to automate and optimize the operation of photovoltaic panels and refrigeration systems in warehouse environments. The study emphasizes achieving coordination between energy generation and consumption, specifically harnessing surplus solar energy for efficient refrigeration. The complex interplay between fluctuating solar irradiance, thermal dynamics of the warehouse, and refrigeration needs underscores the significance of control theory in designing algorithms to dynamically adjust PV panel output and refrigeration system operation. The paper discusses foundational control theory principles, proposes a tailored framework for warehouse operations, and highlights the potential for sustainable energy practices. This paper explores the use of data-driven approaches based on NeuralODEs vs classical ones using physics equations.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101495"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiable programming for gradient-based control and optimization in physical systems\",\"authors\":\"Daniel López-Montero ,&nbsp;Patricia Hernando-Sánchez ,&nbsp;María Limones-Andrade ,&nbsp;Adolfo García-Navarro ,&nbsp;Adrián Valverde ,&nbsp;Juan Manuel Sánchez Parra ,&nbsp;Juan M. Auñón\",\"doi\":\"10.1016/j.segan.2024.101495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an exploration of the application of control theory, particularly utilizing a gradient-based algorithm, to automate and optimize the operation of photovoltaic panels and refrigeration systems in warehouse environments. The study emphasizes achieving coordination between energy generation and consumption, specifically harnessing surplus solar energy for efficient refrigeration. The complex interplay between fluctuating solar irradiance, thermal dynamics of the warehouse, and refrigeration needs underscores the significance of control theory in designing algorithms to dynamically adjust PV panel output and refrigeration system operation. The paper discusses foundational control theory principles, proposes a tailored framework for warehouse operations, and highlights the potential for sustainable energy practices. This paper explores the use of data-driven approaches based on NeuralODEs vs classical ones using physics equations.</p></div>\",\"PeriodicalId\":56142,\"journal\":{\"name\":\"Sustainable Energy Grids & Networks\",\"volume\":\"39 \",\"pages\":\"Article 101495\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Grids & Networks\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352467724002248\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002248","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了控制理论的应用,特别是利用基于梯度的算法,自动优化仓库环境中光伏电池板和制冷系统的运行。研究强调实现能源生产和消费之间的协调,特别是利用剩余太阳能实现高效制冷。波动的太阳辐照度、仓库的热动态和制冷需求之间复杂的相互作用,凸显了控制理论在设计算法以动态调整光伏板输出和制冷系统运行方面的重要性。本文讨论了控制理论的基本原理,提出了针对仓库运营的定制框架,并强调了可持续能源实践的潜力。本文探讨了如何使用基于神经ODE 的数据驱动方法与使用物理方程的经典方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differentiable programming for gradient-based control and optimization in physical systems

This paper presents an exploration of the application of control theory, particularly utilizing a gradient-based algorithm, to automate and optimize the operation of photovoltaic panels and refrigeration systems in warehouse environments. The study emphasizes achieving coordination between energy generation and consumption, specifically harnessing surplus solar energy for efficient refrigeration. The complex interplay between fluctuating solar irradiance, thermal dynamics of the warehouse, and refrigeration needs underscores the significance of control theory in designing algorithms to dynamically adjust PV panel output and refrigeration system operation. The paper discusses foundational control theory principles, proposes a tailored framework for warehouse operations, and highlights the potential for sustainable energy practices. This paper explores the use of data-driven approaches based on NeuralODEs vs classical ones using physics equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
期刊最新文献
A hybrid machine learning-based cyber-threat mitigation in energy and flexibility scheduling of interconnected local energy networks considering a negawatt demand response portfolio An equilibrium-based distribution market model hosting energy communities and grid-scale battery energy storage The clearing strategy of primary frequency control ancillary services market from the point of view ISO in the presence of synchronous generations and virtual power plants based on responsive loads Optimal scheduling of smart home appliances with a stochastic power outage: A two-stage stochastic programming approach Cooperative price-based demand response program for multiple aggregators based on multi-agent reinforcement learning and Shapley-value
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1