{"title":"检测固体生物燃料中铁路枕木废料的污染情况","authors":"Roksana Muzyka, Barbara Kozielska, Marcin Sajdak","doi":"10.1016/j.enmm.2024.100993","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing amount of waste in various industries has led to the phenomenon that pellets contaminated with waste materials, such as plastics, binders of petrochemical origin, partly or wholly made from furniture waste, and shredded railway sleeper waste, which are saturated with creosote oils, are also entering the market. Solid biofuel contaminated by materials such as shredded railway sleeper waste lead to damage of the heating equipment and emissions can impact consumers’ health. Incinerating this type of hazardous waste and fuel contaminated in facilities not designed for this purpose (such as waste incinerators and cement plants) can lead to the emission of harmful organic compounds such as polycyclic aromatic hydrocarbons (PAHs). Given the health risks posed by the release of toxic chemicals into the atmosphere during the uncontrolled incineration of this type of hazardous waste, it is crucial to investigate methods for monitoring the purity of solid biofuels against contamination from shredded railway sleeper waste. This article presents research that has led to the preparation of reliable methodologies for the detection of contamination from railway sleeper waste in solid biofuel. Gas chromatography tests were able to find samples that had creosote oil components, which clearly showed that shredded railway sleeper waste had been added to the biofuel pellets. According to the research presented here, the most common indicators of the presence of railway sleeper waste in biomass pellets are acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 100993"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215153224000813/pdfft?md5=ca76cfc1fe5ed7da731acf7f26ad0601&pid=1-s2.0-S2215153224000813-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Detection of contamination from railway sleeper waste in solid biofuel\",\"authors\":\"Roksana Muzyka, Barbara Kozielska, Marcin Sajdak\",\"doi\":\"10.1016/j.enmm.2024.100993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing amount of waste in various industries has led to the phenomenon that pellets contaminated with waste materials, such as plastics, binders of petrochemical origin, partly or wholly made from furniture waste, and shredded railway sleeper waste, which are saturated with creosote oils, are also entering the market. Solid biofuel contaminated by materials such as shredded railway sleeper waste lead to damage of the heating equipment and emissions can impact consumers’ health. Incinerating this type of hazardous waste and fuel contaminated in facilities not designed for this purpose (such as waste incinerators and cement plants) can lead to the emission of harmful organic compounds such as polycyclic aromatic hydrocarbons (PAHs). Given the health risks posed by the release of toxic chemicals into the atmosphere during the uncontrolled incineration of this type of hazardous waste, it is crucial to investigate methods for monitoring the purity of solid biofuels against contamination from shredded railway sleeper waste. This article presents research that has led to the preparation of reliable methodologies for the detection of contamination from railway sleeper waste in solid biofuel. Gas chromatography tests were able to find samples that had creosote oil components, which clearly showed that shredded railway sleeper waste had been added to the biofuel pellets. According to the research presented here, the most common indicators of the presence of railway sleeper waste in biomass pellets are acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene.</p></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"22 \",\"pages\":\"Article 100993\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2215153224000813/pdfft?md5=ca76cfc1fe5ed7da731acf7f26ad0601&pid=1-s2.0-S2215153224000813-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153224000813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224000813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Detection of contamination from railway sleeper waste in solid biofuel
The increasing amount of waste in various industries has led to the phenomenon that pellets contaminated with waste materials, such as plastics, binders of petrochemical origin, partly or wholly made from furniture waste, and shredded railway sleeper waste, which are saturated with creosote oils, are also entering the market. Solid biofuel contaminated by materials such as shredded railway sleeper waste lead to damage of the heating equipment and emissions can impact consumers’ health. Incinerating this type of hazardous waste and fuel contaminated in facilities not designed for this purpose (such as waste incinerators and cement plants) can lead to the emission of harmful organic compounds such as polycyclic aromatic hydrocarbons (PAHs). Given the health risks posed by the release of toxic chemicals into the atmosphere during the uncontrolled incineration of this type of hazardous waste, it is crucial to investigate methods for monitoring the purity of solid biofuels against contamination from shredded railway sleeper waste. This article presents research that has led to the preparation of reliable methodologies for the detection of contamination from railway sleeper waste in solid biofuel. Gas chromatography tests were able to find samples that had creosote oil components, which clearly showed that shredded railway sleeper waste had been added to the biofuel pellets. According to the research presented here, the most common indicators of the presence of railway sleeper waste in biomass pellets are acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation