聚合物介导的蛋白质/肽治疗稳定性:当前进展与未来方向

IF 26 1区 化学 Q1 POLYMER SCIENCE Progress in Polymer Science Pub Date : 2024-08-08 DOI:10.1016/j.progpolymsci.2024.101867
Rajalakshmi P. Sivasankaran , Katherine Snell , Grace Kunkel , Panagiotis G. Georgiou , Ellie G. Puente , Heather D. Maynard
{"title":"聚合物介导的蛋白质/肽治疗稳定性:当前进展与未来方向","authors":"Rajalakshmi P. Sivasankaran ,&nbsp;Katherine Snell ,&nbsp;Grace Kunkel ,&nbsp;Panagiotis G. Georgiou ,&nbsp;Ellie G. Puente ,&nbsp;Heather D. Maynard","doi":"10.1016/j.progpolymsci.2024.101867","DOIUrl":null,"url":null,"abstract":"<div><p>Proteins and peptides have played a pivotal role in revolutionizing disease treatment over the last century. Despite their commercial success, protein therapeutics can be eliminated or inactivated in the body <em>via</em> excretion or other metabolic pathways. Polymeric materials have been used to stabilize these biomolecules in the presence of external stressors as excipients, conjugates, and in nanomaterial formulations. Numerous advantages arise from the combination of therapeutic agents with polymeric carriers, including improved stability, solubility, prolonged blood circulation, and reduced immunogenicity. PEGylation, the covalent conjugation of poly(ethylene glycol) to a biomolecule of interest, is a common technique that has been employed in 31 FDA-approved therapeutic protein formulations to date. Although PEGylation has been widely adopted, there have been numerous advancements in the protein stabilization field using a variety of polymers including, but not limited to, poly(oxazolines), polypeptides, zwitterionic polymers, and polysaccharides with additional beneficial properties such as biocompatibility and biodegradability. Polymeric carriers can also protect lyophilized protein-peptide products from the stresses of supercooling, ice crystallization, sublimation, and desorption. This review discusses recent progress on the design principles of polymeric tools for biomolecule stabilization and delivery, with a focus on conjugates and nanomaterials. The clinical status of these materials and current challenges impeding the clinical translation are presented. In addition, various future possibilities for polymeric-protein therapies are also highlighted. Finally, the current computational landscape that harnesses the tools of machine learning combined with experimental validation to design polymeric systems tailored for biomolecule stability are discussed.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"156 ","pages":"Article 101867"},"PeriodicalIF":26.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer-mediated protein/peptide therapeutic stabilization: Current progress and future directions\",\"authors\":\"Rajalakshmi P. Sivasankaran ,&nbsp;Katherine Snell ,&nbsp;Grace Kunkel ,&nbsp;Panagiotis G. Georgiou ,&nbsp;Ellie G. Puente ,&nbsp;Heather D. Maynard\",\"doi\":\"10.1016/j.progpolymsci.2024.101867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proteins and peptides have played a pivotal role in revolutionizing disease treatment over the last century. Despite their commercial success, protein therapeutics can be eliminated or inactivated in the body <em>via</em> excretion or other metabolic pathways. Polymeric materials have been used to stabilize these biomolecules in the presence of external stressors as excipients, conjugates, and in nanomaterial formulations. Numerous advantages arise from the combination of therapeutic agents with polymeric carriers, including improved stability, solubility, prolonged blood circulation, and reduced immunogenicity. PEGylation, the covalent conjugation of poly(ethylene glycol) to a biomolecule of interest, is a common technique that has been employed in 31 FDA-approved therapeutic protein formulations to date. Although PEGylation has been widely adopted, there have been numerous advancements in the protein stabilization field using a variety of polymers including, but not limited to, poly(oxazolines), polypeptides, zwitterionic polymers, and polysaccharides with additional beneficial properties such as biocompatibility and biodegradability. Polymeric carriers can also protect lyophilized protein-peptide products from the stresses of supercooling, ice crystallization, sublimation, and desorption. This review discusses recent progress on the design principles of polymeric tools for biomolecule stabilization and delivery, with a focus on conjugates and nanomaterials. The clinical status of these materials and current challenges impeding the clinical translation are presented. In addition, various future possibilities for polymeric-protein therapies are also highlighted. Finally, the current computational landscape that harnesses the tools of machine learning combined with experimental validation to design polymeric systems tailored for biomolecule stability are discussed.</p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"156 \",\"pages\":\"Article 101867\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670024000844\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670024000844","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

上个世纪,蛋白质和肽在疾病治疗的革命性变革中发挥了关键作用。尽管在商业上取得了巨大成功,但蛋白质疗法可能会通过排泄或其他代谢途径在体内被消除或失活。聚合材料作为辅料、共轭物和纳米材料制剂,已被用于在外部压力下稳定这些生物分子。治疗药物与聚合物载体的结合具有许多优点,包括提高稳定性、溶解性、延长血液循环和降低免疫原性。聚乙二醇化(PEGylation)是将聚乙二醇与相关生物大分子共价结合的一种常用技术,迄今已在 31 种经 FDA 批准的治疗性蛋白质制剂中使用。虽然聚乙二醇化技术已被广泛采用,但在蛋白质稳定领域也取得了许多进展,使用的聚合物包括但不限于聚(恶唑啉)、多肽、齐聚亚氨基聚合物和具有生物相容性和生物降解性等额外有益特性的多糖。聚合物载体还能保护冻干蛋白肽产品免受过冷、冰结晶、升华和解吸等应力的影响。本综述讨论了用于生物大分子稳定和递送的聚合物工具设计原理的最新进展,重点是共轭物和纳米材料。文章介绍了这些材料的临床应用现状以及目前阻碍临床转化的挑战。此外,还重点介绍了聚合物-蛋白质疗法未来的各种可能性。最后,还讨论了当前的计算前景,即利用机器学习工具结合实验验证来设计适合生物分子稳定性的聚合物系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polymer-mediated protein/peptide therapeutic stabilization: Current progress and future directions

Proteins and peptides have played a pivotal role in revolutionizing disease treatment over the last century. Despite their commercial success, protein therapeutics can be eliminated or inactivated in the body via excretion or other metabolic pathways. Polymeric materials have been used to stabilize these biomolecules in the presence of external stressors as excipients, conjugates, and in nanomaterial formulations. Numerous advantages arise from the combination of therapeutic agents with polymeric carriers, including improved stability, solubility, prolonged blood circulation, and reduced immunogenicity. PEGylation, the covalent conjugation of poly(ethylene glycol) to a biomolecule of interest, is a common technique that has been employed in 31 FDA-approved therapeutic protein formulations to date. Although PEGylation has been widely adopted, there have been numerous advancements in the protein stabilization field using a variety of polymers including, but not limited to, poly(oxazolines), polypeptides, zwitterionic polymers, and polysaccharides with additional beneficial properties such as biocompatibility and biodegradability. Polymeric carriers can also protect lyophilized protein-peptide products from the stresses of supercooling, ice crystallization, sublimation, and desorption. This review discusses recent progress on the design principles of polymeric tools for biomolecule stabilization and delivery, with a focus on conjugates and nanomaterials. The clinical status of these materials and current challenges impeding the clinical translation are presented. In addition, various future possibilities for polymeric-protein therapies are also highlighted. Finally, the current computational landscape that harnesses the tools of machine learning combined with experimental validation to design polymeric systems tailored for biomolecule stability are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
期刊最新文献
Advanced Functional Membranes Based on Amphiphilic Copolymers Editorial Board Progress toward sustainable polymer technologies with ball-mill grinding Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1