{"title":"基于声学事件的混凝土桥梁预应力筋断裂自动监测","authors":"Sasan Farhadi, Mauro Corrado, Giulio Ventura","doi":"10.1111/mice.13321","DOIUrl":null,"url":null,"abstract":"Prestressing wire breakage induced by corrosion is hazardous, especially for concrete structures subjected to severe aging factors, such as bridges. Developing an automated monitoring system for such a damage event is therefore essential for ensuring structural integrity and preventing catastrophic failures. In line with this target, a supervised deep learning–based approach is proposed to detect and classify acoustic emissions released by prestressing wire breakage. The application of advanced signal processing techniques is central to this study to determine optimal model performance and accurately detect patterns of various events. Diverse pretrained convolutional neural network (CNN) architectures are explored and further enhanced by incorporating Bottleneck Attention Mechanisms to refine their performance capabilities. Additionally, a novel hybrid model, AcousticNet, tailored for acoustic event classification in the context of structural health monitoring, is developed. The models are trained and validated using an extensive data set collected from controlled laboratory experiments and in situ bridge monitoring scenarios, ensuring comprehensive adaptability and generalizability. The comprehensive analysis highlights that the Xception model, enhanced with a bottleneck module, and AcousticNet significantly outperform other models in capturing intricate patterns within acoustic signals. Integrating advanced CNN architectures with signal processing methods marks a substantial advancement in the automated monitoring of prestressed concrete bridges.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"3 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated acoustic event‐based monitoring of prestressing tendons breakage in concrete bridges\",\"authors\":\"Sasan Farhadi, Mauro Corrado, Giulio Ventura\",\"doi\":\"10.1111/mice.13321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prestressing wire breakage induced by corrosion is hazardous, especially for concrete structures subjected to severe aging factors, such as bridges. Developing an automated monitoring system for such a damage event is therefore essential for ensuring structural integrity and preventing catastrophic failures. In line with this target, a supervised deep learning–based approach is proposed to detect and classify acoustic emissions released by prestressing wire breakage. The application of advanced signal processing techniques is central to this study to determine optimal model performance and accurately detect patterns of various events. Diverse pretrained convolutional neural network (CNN) architectures are explored and further enhanced by incorporating Bottleneck Attention Mechanisms to refine their performance capabilities. Additionally, a novel hybrid model, AcousticNet, tailored for acoustic event classification in the context of structural health monitoring, is developed. The models are trained and validated using an extensive data set collected from controlled laboratory experiments and in situ bridge monitoring scenarios, ensuring comprehensive adaptability and generalizability. The comprehensive analysis highlights that the Xception model, enhanced with a bottleneck module, and AcousticNet significantly outperform other models in capturing intricate patterns within acoustic signals. Integrating advanced CNN architectures with signal processing methods marks a substantial advancement in the automated monitoring of prestressed concrete bridges.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13321\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13321","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Automated acoustic event‐based monitoring of prestressing tendons breakage in concrete bridges
Prestressing wire breakage induced by corrosion is hazardous, especially for concrete structures subjected to severe aging factors, such as bridges. Developing an automated monitoring system for such a damage event is therefore essential for ensuring structural integrity and preventing catastrophic failures. In line with this target, a supervised deep learning–based approach is proposed to detect and classify acoustic emissions released by prestressing wire breakage. The application of advanced signal processing techniques is central to this study to determine optimal model performance and accurately detect patterns of various events. Diverse pretrained convolutional neural network (CNN) architectures are explored and further enhanced by incorporating Bottleneck Attention Mechanisms to refine their performance capabilities. Additionally, a novel hybrid model, AcousticNet, tailored for acoustic event classification in the context of structural health monitoring, is developed. The models are trained and validated using an extensive data set collected from controlled laboratory experiments and in situ bridge monitoring scenarios, ensuring comprehensive adaptability and generalizability. The comprehensive analysis highlights that the Xception model, enhanced with a bottleneck module, and AcousticNet significantly outperform other models in capturing intricate patterns within acoustic signals. Integrating advanced CNN architectures with signal processing methods marks a substantial advancement in the automated monitoring of prestressed concrete bridges.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.