{"title":"FPJA-Net:基于特征金字塔和联合注意力的轻量级端到端睡眠阶段预测网络","authors":"Zhi Liu, Qinhan Zhang, Sixin Luo, Meiqiao Qin","doi":"10.1007/s12539-024-00636-9","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep staging is the most crucial work before diagnosing and treating sleep disorders. Traditional manual sleep staging is time-consuming and depends on the skill of experts. Nowadays, automatic sleep staging based on deep learning attracts more and more scientific researchers. As we know, the salient waves in sleep signals contain the most important information for automatic sleep staging. However, the key information is not fully utilized in existing deep learning methods since most of them only use CNN or RNN which could not capture multi-scale features in salient waves effectively. To tackle this limitation, we propose a lightweight end-to-end network for sleep stage prediction based on feature pyramid and joint attention. The feature pyramid module is designed to effectively extract multi-scale features in salient waves, and these features are then fed to the joint attention module to closely attend to the channel and location information of the salient waves. The proposed network has much fewer parameters and significant performance improvement, which is better than the state-of-the-art results. The overall accuracy and macro F1 score on the public dataset Sleep-EDF39, Sleep-EDF153 and SHHS are 90.1%, 87.8%, 87.4%, 84.4% and 86.9%, 83.9%, respectively. Ablation experiments confirm the effectiveness of each module.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"769-780"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPJA-Net: A Lightweight End-to-End Network for Sleep Stage Prediction Based on Feature Pyramid and Joint Attention.\",\"authors\":\"Zhi Liu, Qinhan Zhang, Sixin Luo, Meiqiao Qin\",\"doi\":\"10.1007/s12539-024-00636-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sleep staging is the most crucial work before diagnosing and treating sleep disorders. Traditional manual sleep staging is time-consuming and depends on the skill of experts. Nowadays, automatic sleep staging based on deep learning attracts more and more scientific researchers. As we know, the salient waves in sleep signals contain the most important information for automatic sleep staging. However, the key information is not fully utilized in existing deep learning methods since most of them only use CNN or RNN which could not capture multi-scale features in salient waves effectively. To tackle this limitation, we propose a lightweight end-to-end network for sleep stage prediction based on feature pyramid and joint attention. The feature pyramid module is designed to effectively extract multi-scale features in salient waves, and these features are then fed to the joint attention module to closely attend to the channel and location information of the salient waves. The proposed network has much fewer parameters and significant performance improvement, which is better than the state-of-the-art results. The overall accuracy and macro F1 score on the public dataset Sleep-EDF39, Sleep-EDF153 and SHHS are 90.1%, 87.8%, 87.4%, 84.4% and 86.9%, 83.9%, respectively. Ablation experiments confirm the effectiveness of each module.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"769-780\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00636-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00636-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
FPJA-Net: A Lightweight End-to-End Network for Sleep Stage Prediction Based on Feature Pyramid and Joint Attention.
Sleep staging is the most crucial work before diagnosing and treating sleep disorders. Traditional manual sleep staging is time-consuming and depends on the skill of experts. Nowadays, automatic sleep staging based on deep learning attracts more and more scientific researchers. As we know, the salient waves in sleep signals contain the most important information for automatic sleep staging. However, the key information is not fully utilized in existing deep learning methods since most of them only use CNN or RNN which could not capture multi-scale features in salient waves effectively. To tackle this limitation, we propose a lightweight end-to-end network for sleep stage prediction based on feature pyramid and joint attention. The feature pyramid module is designed to effectively extract multi-scale features in salient waves, and these features are then fed to the joint attention module to closely attend to the channel and location information of the salient waves. The proposed network has much fewer parameters and significant performance improvement, which is better than the state-of-the-art results. The overall accuracy and macro F1 score on the public dataset Sleep-EDF39, Sleep-EDF153 and SHHS are 90.1%, 87.8%, 87.4%, 84.4% and 86.9%, 83.9%, respectively. Ablation experiments confirm the effectiveness of each module.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.