比较书面和分子符号系统的复杂性。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-20 DOI:10.1016/j.biosystems.2024.105297
Julia Esposito , Jyotika Kakar , Tasneem Khokhar , Tiana Noll-Walker , Fatima Omar , Anna Christen , H. James Cleaves II , McCullen Sandora
{"title":"比较书面和分子符号系统的复杂性。","authors":"Julia Esposito ,&nbsp;Jyotika Kakar ,&nbsp;Tasneem Khokhar ,&nbsp;Tiana Noll-Walker ,&nbsp;Fatima Omar ,&nbsp;Anna Christen ,&nbsp;H. James Cleaves II ,&nbsp;McCullen Sandora","doi":"10.1016/j.biosystems.2024.105297","DOIUrl":null,"url":null,"abstract":"<div><p>Symbolic systems (SSs) are uniquely products of living systems, such that symbolism and life may be inextricably intertwined phenomena. Within a given SS, there is a range of symbol complexity over which signaling is functionally optimized. This range exists relative to a complex and potentially infinitely large background of latent, unused symbol space. Understanding how symbol sets sample this latent space is relevant to diverse fields including biochemistry and linguistics.</p><p>We quantitatively explored the graphic complexity of two biosemiotic systems: genetically encoded amino acids (GEAAs) and written language. Molecular and graphical notions of complexity are highly correlated for GEAAs and written language. Symbol sets are generally neither minimally nor maximally complex relative to their latent spaces, but exist across an objectively definable distribution, with the GEAAs having especially low complexity. The selection pressures guiding these disparate systems are explicable by symbol production and disambiguation efficiency. These selection pressures may be universal, offer a quantifiable metric for comparison, and suggest that all life in the Universe may discover optimal symbol set complexity distributions with respect to their latent spaces. If so, the “complexity” of individual components of SSs may not be as strong a biomarker as symbol set complexity distribution.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing the complexity of written and molecular symbolic systems\",\"authors\":\"Julia Esposito ,&nbsp;Jyotika Kakar ,&nbsp;Tasneem Khokhar ,&nbsp;Tiana Noll-Walker ,&nbsp;Fatima Omar ,&nbsp;Anna Christen ,&nbsp;H. James Cleaves II ,&nbsp;McCullen Sandora\",\"doi\":\"10.1016/j.biosystems.2024.105297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Symbolic systems (SSs) are uniquely products of living systems, such that symbolism and life may be inextricably intertwined phenomena. Within a given SS, there is a range of symbol complexity over which signaling is functionally optimized. This range exists relative to a complex and potentially infinitely large background of latent, unused symbol space. Understanding how symbol sets sample this latent space is relevant to diverse fields including biochemistry and linguistics.</p><p>We quantitatively explored the graphic complexity of two biosemiotic systems: genetically encoded amino acids (GEAAs) and written language. Molecular and graphical notions of complexity are highly correlated for GEAAs and written language. Symbol sets are generally neither minimally nor maximally complex relative to their latent spaces, but exist across an objectively definable distribution, with the GEAAs having especially low complexity. The selection pressures guiding these disparate systems are explicable by symbol production and disambiguation efficiency. These selection pressures may be universal, offer a quantifiable metric for comparison, and suggest that all life in the Universe may discover optimal symbol set complexity distributions with respect to their latent spaces. If so, the “complexity” of individual components of SSs may not be as strong a biomarker as symbol set complexity distribution.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724001825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

符号系统(SS)是生命系统的独特产物,因此符号与生命可能是密不可分的现象。在一个特定的符号系统中,存在一个符号复杂度的范围,在这个范围内,信号传递的功能得到优化。这一范围相对于复杂且可能无限大的潜在、未使用的符号空间背景而存在。了解符号集如何对这一潜在空间进行采样与生物化学和语言学等不同领域息息相关。我们对基因编码氨基酸(GEAA)和书面语言这两个生物符号系统的图形复杂性进行了定量探索。对于基因编码氨基酸和书面语言来说,复杂性的分子概念和图形概念高度相关。相对于其潜在空间,符号集一般既不具有最小复杂性,也不具有最大复杂性,而是存在于客观上可定义的分布中,其中基因编码氨基酸的复杂性尤其低。引导这些不同系统的选择压力可以通过符号生成和消歧效率来解释。这些选择压力可能是普遍存在的,提供了一个可量化的比较标准,并表明宇宙中的所有生命都可能发现与其潜在空间相关的最佳符号集复杂性分布。如果是这样的话,那么符号集单个组成部分的 "复杂性 "可能并不像符号集复杂性分布那样是一个强有力的生物标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing the complexity of written and molecular symbolic systems

Symbolic systems (SSs) are uniquely products of living systems, such that symbolism and life may be inextricably intertwined phenomena. Within a given SS, there is a range of symbol complexity over which signaling is functionally optimized. This range exists relative to a complex and potentially infinitely large background of latent, unused symbol space. Understanding how symbol sets sample this latent space is relevant to diverse fields including biochemistry and linguistics.

We quantitatively explored the graphic complexity of two biosemiotic systems: genetically encoded amino acids (GEAAs) and written language. Molecular and graphical notions of complexity are highly correlated for GEAAs and written language. Symbol sets are generally neither minimally nor maximally complex relative to their latent spaces, but exist across an objectively definable distribution, with the GEAAs having especially low complexity. The selection pressures guiding these disparate systems are explicable by symbol production and disambiguation efficiency. These selection pressures may be universal, offer a quantifiable metric for comparison, and suggest that all life in the Universe may discover optimal symbol set complexity distributions with respect to their latent spaces. If so, the “complexity” of individual components of SSs may not be as strong a biomarker as symbol set complexity distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1