Yongsheng Du , Mingming Lu , Jieqiong Lin , Yucheng Li , Shaoyi Sun
{"title":"脉冲激光辅助和超声波椭圆振动切割协同作用下 SiCp/Al 复合材料加工性能的研究","authors":"Yongsheng Du , Mingming Lu , Jieqiong Lin , Yucheng Li , Shaoyi Sun","doi":"10.1016/j.jmatprotec.2024.118561","DOIUrl":null,"url":null,"abstract":"<div><p>While SiCp/Al composites are widely used in engineering applications owing to their excellent material properties, the traditional machining of SiCp/Al composites remains challenging, mainly in terms of poor surface quality and severe tool wear. In this study, a multi-energy field assisted cutting method—pulsed laser-assisted ultrasonic elliptical vibration cutting (PLA-UEVC)—for precision and high-efficiency machining of SiCp/Al composites is introduced. In this method, the intermittent impact cutting effect caused by the tool's ultrasonic frequency elliptical vibration, pulsed-laser-induced material-generated thermoelastic excitation effect, and transient temperature field synergistically work together to enhance the machinability of SiCp/Al composites. Temperature-field simulations were first utilized to simulate the temperature under suitable pulsed laser parameters. Comparative experiments with different volume fractions and particle sizes under different machining methods were conducted to evaluate the advantages of the proposed composite energy field-assisted machining method in terms of chip modulation, surface quality improvement, and tool performance improvement. The experimental results show that multi-energy field assisted cutting achieves better chip control and obtains shorter, easier-to-break chips than traditional cutting, pulsed laser-assisted cutting, and ultrasonic vibration-assisted cutting. The cutting forces of the three industrial-grade SiCp/Al6061 composites with different material properties were significantly reduced (by more than 55 %), with a surface roughness of less than 30 nm obtained for all three composites, effectively suppressing surface defects such as particle failure, thermal damage, and residual height caused by tool vibration. In addition, multi-energy field assisted cutting effectively minimized the abrasive and diffusive wear of the tool and reduced the adhesion phenomenon on the back face of the tool. These findings provide an important theoretical basis and practical machining guidance for multi-energy-field synergistic machining to improve the machinability of SiCp/Al composites.</p></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"332 ","pages":"Article 118561"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on machinability of SiCp/Al composites under the synergistic effect of pulsed laser assisted and ultrasonic elliptical vibration cutting\",\"authors\":\"Yongsheng Du , Mingming Lu , Jieqiong Lin , Yucheng Li , Shaoyi Sun\",\"doi\":\"10.1016/j.jmatprotec.2024.118561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While SiCp/Al composites are widely used in engineering applications owing to their excellent material properties, the traditional machining of SiCp/Al composites remains challenging, mainly in terms of poor surface quality and severe tool wear. In this study, a multi-energy field assisted cutting method—pulsed laser-assisted ultrasonic elliptical vibration cutting (PLA-UEVC)—for precision and high-efficiency machining of SiCp/Al composites is introduced. In this method, the intermittent impact cutting effect caused by the tool's ultrasonic frequency elliptical vibration, pulsed-laser-induced material-generated thermoelastic excitation effect, and transient temperature field synergistically work together to enhance the machinability of SiCp/Al composites. Temperature-field simulations were first utilized to simulate the temperature under suitable pulsed laser parameters. Comparative experiments with different volume fractions and particle sizes under different machining methods were conducted to evaluate the advantages of the proposed composite energy field-assisted machining method in terms of chip modulation, surface quality improvement, and tool performance improvement. The experimental results show that multi-energy field assisted cutting achieves better chip control and obtains shorter, easier-to-break chips than traditional cutting, pulsed laser-assisted cutting, and ultrasonic vibration-assisted cutting. The cutting forces of the three industrial-grade SiCp/Al6061 composites with different material properties were significantly reduced (by more than 55 %), with a surface roughness of less than 30 nm obtained for all three composites, effectively suppressing surface defects such as particle failure, thermal damage, and residual height caused by tool vibration. In addition, multi-energy field assisted cutting effectively minimized the abrasive and diffusive wear of the tool and reduced the adhesion phenomenon on the back face of the tool. These findings provide an important theoretical basis and practical machining guidance for multi-energy-field synergistic machining to improve the machinability of SiCp/Al composites.</p></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"332 \",\"pages\":\"Article 118561\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013624002796\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624002796","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Investigation on machinability of SiCp/Al composites under the synergistic effect of pulsed laser assisted and ultrasonic elliptical vibration cutting
While SiCp/Al composites are widely used in engineering applications owing to their excellent material properties, the traditional machining of SiCp/Al composites remains challenging, mainly in terms of poor surface quality and severe tool wear. In this study, a multi-energy field assisted cutting method—pulsed laser-assisted ultrasonic elliptical vibration cutting (PLA-UEVC)—for precision and high-efficiency machining of SiCp/Al composites is introduced. In this method, the intermittent impact cutting effect caused by the tool's ultrasonic frequency elliptical vibration, pulsed-laser-induced material-generated thermoelastic excitation effect, and transient temperature field synergistically work together to enhance the machinability of SiCp/Al composites. Temperature-field simulations were first utilized to simulate the temperature under suitable pulsed laser parameters. Comparative experiments with different volume fractions and particle sizes under different machining methods were conducted to evaluate the advantages of the proposed composite energy field-assisted machining method in terms of chip modulation, surface quality improvement, and tool performance improvement. The experimental results show that multi-energy field assisted cutting achieves better chip control and obtains shorter, easier-to-break chips than traditional cutting, pulsed laser-assisted cutting, and ultrasonic vibration-assisted cutting. The cutting forces of the three industrial-grade SiCp/Al6061 composites with different material properties were significantly reduced (by more than 55 %), with a surface roughness of less than 30 nm obtained for all three composites, effectively suppressing surface defects such as particle failure, thermal damage, and residual height caused by tool vibration. In addition, multi-energy field assisted cutting effectively minimized the abrasive and diffusive wear of the tool and reduced the adhesion phenomenon on the back face of the tool. These findings provide an important theoretical basis and practical machining guidance for multi-energy-field synergistic machining to improve the machinability of SiCp/Al composites.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.