Sara E. Gilson, Volodymyr Svitlyk, Andrey A. Bukaemskiy, Jonas Niessen, Theresa Lender, Gabriel L. Murphy, Maximilian Henkes, Holger Lippold, Julien Marquardt, Shavkat Akhmadaliev, Christoph Hennig, Bjoern Winkler, Thorsten Tonnesen, Lars Peters, Cornelius Fischer, Nina Huittinen
{"title":"金离子辐照掺杂 Eu 的 LaPO4 陶瓷和单晶的微观结构研究","authors":"Sara E. Gilson, Volodymyr Svitlyk, Andrey A. Bukaemskiy, Jonas Niessen, Theresa Lender, Gabriel L. Murphy, Maximilian Henkes, Holger Lippold, Julien Marquardt, Shavkat Akhmadaliev, Christoph Hennig, Bjoern Winkler, Thorsten Tonnesen, Lars Peters, Cornelius Fischer, Nina Huittinen","doi":"10.1038/s41529-024-00504-3","DOIUrl":null,"url":null,"abstract":"Ceramics and single crystals of LaPO4 monazite doped with Eu(III) were irradiated with 14 MeV Au5+ ions at three different fluences. Changes to crystallinity, local coordination environments, and topography were probed using grazing-incidence X-ray diffraction (GIXRD), vertical scanning interferometry (VSI), scanning electron microscopy (SEM), Raman, and luminescence spectroscopy. GIXRD data of the ceramics revealed fluence dependent amorphization. A similar level of amorphization was detected for samples irradiated with 5 × 1013 ions/cm2 and 1 × 1014 ions/cm2, whereas the sample irradiated with the highest fluence of 1 × 1015 ions/cm2 appeared slightly less amorphous. VSI showed clear swelling of entire grains at the highest ion fluence, while more localized damage to grain boundaries was detected for ceramic samples irradiated at the lowest fluence. Single crystal specimens showed no pronounced topography changes following irradiation. SEM images of the ceramic irradiated at the highest fluence showed topological features indicative of grain surface melting. Raman and luminescence data showed a different degree of disorder in polycrystalline vs. single crystal samples. While changes to PO4 vibrational modes were observed in the ceramics, changes were more subtle or not present in the single crystals. The opposite was observed when probing the local Ln-O environment using Eu(III) luminescence, where the larger changes in terms of an elongation of the Eu-O (or La-O) bond and an increasing relative disorder with increasing fluence were observed only for the single crystals. The dissimilar trends observed in irradiated single crystals and ceramics indicate that grain boundary chemistry likely plays a significant role in the radiation response.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00504-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Microstructural investigation of Au ion-irradiated Eu-doped LaPO4 ceramics and single crystals\",\"authors\":\"Sara E. Gilson, Volodymyr Svitlyk, Andrey A. Bukaemskiy, Jonas Niessen, Theresa Lender, Gabriel L. Murphy, Maximilian Henkes, Holger Lippold, Julien Marquardt, Shavkat Akhmadaliev, Christoph Hennig, Bjoern Winkler, Thorsten Tonnesen, Lars Peters, Cornelius Fischer, Nina Huittinen\",\"doi\":\"10.1038/s41529-024-00504-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ceramics and single crystals of LaPO4 monazite doped with Eu(III) were irradiated with 14 MeV Au5+ ions at three different fluences. Changes to crystallinity, local coordination environments, and topography were probed using grazing-incidence X-ray diffraction (GIXRD), vertical scanning interferometry (VSI), scanning electron microscopy (SEM), Raman, and luminescence spectroscopy. GIXRD data of the ceramics revealed fluence dependent amorphization. A similar level of amorphization was detected for samples irradiated with 5 × 1013 ions/cm2 and 1 × 1014 ions/cm2, whereas the sample irradiated with the highest fluence of 1 × 1015 ions/cm2 appeared slightly less amorphous. VSI showed clear swelling of entire grains at the highest ion fluence, while more localized damage to grain boundaries was detected for ceramic samples irradiated at the lowest fluence. Single crystal specimens showed no pronounced topography changes following irradiation. SEM images of the ceramic irradiated at the highest fluence showed topological features indicative of grain surface melting. Raman and luminescence data showed a different degree of disorder in polycrystalline vs. single crystal samples. While changes to PO4 vibrational modes were observed in the ceramics, changes were more subtle or not present in the single crystals. The opposite was observed when probing the local Ln-O environment using Eu(III) luminescence, where the larger changes in terms of an elongation of the Eu-O (or La-O) bond and an increasing relative disorder with increasing fluence were observed only for the single crystals. The dissimilar trends observed in irradiated single crystals and ceramics indicate that grain boundary chemistry likely plays a significant role in the radiation response.\",\"PeriodicalId\":19270,\"journal\":{\"name\":\"npj Materials Degradation\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41529-024-00504-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Degradation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41529-024-00504-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00504-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructural investigation of Au ion-irradiated Eu-doped LaPO4 ceramics and single crystals
Ceramics and single crystals of LaPO4 monazite doped with Eu(III) were irradiated with 14 MeV Au5+ ions at three different fluences. Changes to crystallinity, local coordination environments, and topography were probed using grazing-incidence X-ray diffraction (GIXRD), vertical scanning interferometry (VSI), scanning electron microscopy (SEM), Raman, and luminescence spectroscopy. GIXRD data of the ceramics revealed fluence dependent amorphization. A similar level of amorphization was detected for samples irradiated with 5 × 1013 ions/cm2 and 1 × 1014 ions/cm2, whereas the sample irradiated with the highest fluence of 1 × 1015 ions/cm2 appeared slightly less amorphous. VSI showed clear swelling of entire grains at the highest ion fluence, while more localized damage to grain boundaries was detected for ceramic samples irradiated at the lowest fluence. Single crystal specimens showed no pronounced topography changes following irradiation. SEM images of the ceramic irradiated at the highest fluence showed topological features indicative of grain surface melting. Raman and luminescence data showed a different degree of disorder in polycrystalline vs. single crystal samples. While changes to PO4 vibrational modes were observed in the ceramics, changes were more subtle or not present in the single crystals. The opposite was observed when probing the local Ln-O environment using Eu(III) luminescence, where the larger changes in terms of an elongation of the Eu-O (or La-O) bond and an increasing relative disorder with increasing fluence were observed only for the single crystals. The dissimilar trends observed in irradiated single crystals and ceramics indicate that grain boundary chemistry likely plays a significant role in the radiation response.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies