Si-Qi Zhang, Yin-Ning Zhou, Jie Jin, Zheng-Hong Luo
{"title":"跟踪共聚动力学的新模型:序列结构质量评估","authors":"Si-Qi Zhang, Yin-Ning Zhou, Jie Jin, Zheng-Hong Luo","doi":"10.1002/aic.18586","DOIUrl":null,"url":null,"abstract":"<p>Precise control over sequence structure in copolymers is essential for chemical product engineering. The complexity of sequence structures results in the challenging characterization of monomer sequences. Herein, a chemical composition model (CD model) is developed to record the distribution density of monomers in the chain segment, where the deviation of the chemical composition function between a copolymer and its ideal sequence structure can directly map the sequence structure quality. The application of the CD model in randomly generated virtual copolymers demonstrates that the model has great sensitivity and discrimination to evaluate sequence structures accurately. Furthermore, the CD model is combined with the kinetic Monte Carlo algorithm to explicitly track the evolution of sequence structure quality in the copolymerization process. The CD model provides an insight into the evolution of sequence structure, which is conducive to building the bridge between molecular structure and properties for the development of chemical product engineering.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel model for tracking copolymerization kinetics: Sequence structure quality evaluation\",\"authors\":\"Si-Qi Zhang, Yin-Ning Zhou, Jie Jin, Zheng-Hong Luo\",\"doi\":\"10.1002/aic.18586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precise control over sequence structure in copolymers is essential for chemical product engineering. The complexity of sequence structures results in the challenging characterization of monomer sequences. Herein, a chemical composition model (CD model) is developed to record the distribution density of monomers in the chain segment, where the deviation of the chemical composition function between a copolymer and its ideal sequence structure can directly map the sequence structure quality. The application of the CD model in randomly generated virtual copolymers demonstrates that the model has great sensitivity and discrimination to evaluate sequence structures accurately. Furthermore, the CD model is combined with the kinetic Monte Carlo algorithm to explicitly track the evolution of sequence structure quality in the copolymerization process. The CD model provides an insight into the evolution of sequence structure, which is conducive to building the bridge between molecular structure and properties for the development of chemical product engineering.</p>\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"70 11\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aic.18586\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18586","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A novel model for tracking copolymerization kinetics: Sequence structure quality evaluation
Precise control over sequence structure in copolymers is essential for chemical product engineering. The complexity of sequence structures results in the challenging characterization of monomer sequences. Herein, a chemical composition model (CD model) is developed to record the distribution density of monomers in the chain segment, where the deviation of the chemical composition function between a copolymer and its ideal sequence structure can directly map the sequence structure quality. The application of the CD model in randomly generated virtual copolymers demonstrates that the model has great sensitivity and discrimination to evaluate sequence structures accurately. Furthermore, the CD model is combined with the kinetic Monte Carlo algorithm to explicitly track the evolution of sequence structure quality in the copolymerization process. The CD model provides an insight into the evolution of sequence structure, which is conducive to building the bridge between molecular structure and properties for the development of chemical product engineering.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.