Aureobasidium spp.作为鸟氨酸-尿素循环衍生生物产品生物合成底盘的生物技术应用。

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Biotechnology Pub Date : 2024-08-19 DOI:10.1080/07388551.2024.2382954
Khin Myo Myo Tint, Xin Wei, Peng Wang, Guang-Lei Liu, Mei Zhang, Zhen-Ming Chi, Zhe Chi
{"title":"Aureobasidium spp.作为鸟氨酸-尿素循环衍生生物产品生物合成底盘的生物技术应用。","authors":"Khin Myo Myo Tint, Xin Wei, Peng Wang, Guang-Lei Liu, Mei Zhang, Zhen-Ming Chi, Zhe Chi","doi":"10.1080/07388551.2024.2382954","DOIUrl":null,"url":null,"abstract":"<p><p>The ornithine-urea cycle (OUC) in fungal cells has biotechnological importance and many physiological functions and is closely related to the acetyl glutamate cycle (AGC). Fumarate can be released from argininosuccinate under the catalysis of argininosuccinate lyase in OUC which is regulated by the Ca<sup>2+</sup> signaling pathway and over 93.9 ± 0.8 g/L fumarate can be yielded by the engineered strain of <i>Aureobasidium pullulans</i> var. <i>aubasidan</i>i in the presence of CaCO<sub>3</sub>. Furthermore, 2.1 ± 0.02 mg of L-ornithine (L-Orn)/mg of the protein also can be synthesized <i>via</i> OUC by the engineered strains of <i>Aureobasidum melanogenum</i>. Fumarate can be transformed into many drugs and amino acids and L-Orn can be converted into siderophores (1.7 g/L), putrescine (33.4 g/L) and L-piperazic acid (L-Piz) (3.0 g/L), by different recombinant strains of <i>A. melanogenum</i>. All the fumarate, L-Orn, siderophore, putrescine and L-Piz have many applications. As the yeast-like fungi and the promising chassis, <i>Aureobasidium</i> spp, have many advantages over any other fungal strains. Further genetic manipulation and bioengineering will enhance the biosynthesis of fumarate and L-Orn and their derivates.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biotechnological application of <i>Aureobasidium</i> spp. as a promising chassis for biosynthesis of ornithine-urea cycle-derived bioproducts.\",\"authors\":\"Khin Myo Myo Tint, Xin Wei, Peng Wang, Guang-Lei Liu, Mei Zhang, Zhen-Ming Chi, Zhe Chi\",\"doi\":\"10.1080/07388551.2024.2382954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ornithine-urea cycle (OUC) in fungal cells has biotechnological importance and many physiological functions and is closely related to the acetyl glutamate cycle (AGC). Fumarate can be released from argininosuccinate under the catalysis of argininosuccinate lyase in OUC which is regulated by the Ca<sup>2+</sup> signaling pathway and over 93.9 ± 0.8 g/L fumarate can be yielded by the engineered strain of <i>Aureobasidium pullulans</i> var. <i>aubasidan</i>i in the presence of CaCO<sub>3</sub>. Furthermore, 2.1 ± 0.02 mg of L-ornithine (L-Orn)/mg of the protein also can be synthesized <i>via</i> OUC by the engineered strains of <i>Aureobasidum melanogenum</i>. Fumarate can be transformed into many drugs and amino acids and L-Orn can be converted into siderophores (1.7 g/L), putrescine (33.4 g/L) and L-piperazic acid (L-Piz) (3.0 g/L), by different recombinant strains of <i>A. melanogenum</i>. All the fumarate, L-Orn, siderophore, putrescine and L-Piz have many applications. As the yeast-like fungi and the promising chassis, <i>Aureobasidium</i> spp, have many advantages over any other fungal strains. Further genetic manipulation and bioengineering will enhance the biosynthesis of fumarate and L-Orn and their derivates.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2024.2382954\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2024.2382954","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真菌细胞中的鸟氨酸脲循环(OUC)具有重要的生物技术意义和多种生理功能,与乙酰谷氨酸循环(AGC)密切相关。在 OUC 中,在精氨酸琥珀酸裂解酶的催化下,富马酸可从精氨酸琥珀酸中释放出来,而精氨酸琥珀酸裂解酶受 Ca2+ 信号通路的调控,在 CaCO3 的存在下,工程菌株 Aureobasidium pullulans var.此外,Aureobasidum melanogenum 的工程菌株也能通过 OUC 合成 2.1 ± 0.02 mg L-鸟氨酸(L-Orn)/mg 蛋白质。富马酸盐可转化为多种药物和氨基酸,L-Orn可通过不同的重组菌株转化为苷酸(1.7 g/L)、腐胺(33.4 g/L)和L-哌嗪酸(L-Piz)(3.0 g/L)。所有富马酸盐、L-Orn、苷元、腐胺和 L-Piz 都有很多用途。与其他真菌菌株相比,类酵母真菌和有前途的底盘 Aureobasidium spp 具有许多优势。进一步的遗传操作和生物工程将提高富马酸和 L-Orn 及其衍生物的生物合成能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biotechnological application of Aureobasidium spp. as a promising chassis for biosynthesis of ornithine-urea cycle-derived bioproducts.

The ornithine-urea cycle (OUC) in fungal cells has biotechnological importance and many physiological functions and is closely related to the acetyl glutamate cycle (AGC). Fumarate can be released from argininosuccinate under the catalysis of argininosuccinate lyase in OUC which is regulated by the Ca2+ signaling pathway and over 93.9 ± 0.8 g/L fumarate can be yielded by the engineered strain of Aureobasidium pullulans var. aubasidani in the presence of CaCO3. Furthermore, 2.1 ± 0.02 mg of L-ornithine (L-Orn)/mg of the protein also can be synthesized via OUC by the engineered strains of Aureobasidum melanogenum. Fumarate can be transformed into many drugs and amino acids and L-Orn can be converted into siderophores (1.7 g/L), putrescine (33.4 g/L) and L-piperazic acid (L-Piz) (3.0 g/L), by different recombinant strains of A. melanogenum. All the fumarate, L-Orn, siderophore, putrescine and L-Piz have many applications. As the yeast-like fungi and the promising chassis, Aureobasidium spp, have many advantages over any other fungal strains. Further genetic manipulation and bioengineering will enhance the biosynthesis of fumarate and L-Orn and their derivates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
期刊最新文献
Farm to fork applications: how vibrational spectroscopy can be used along the whole value chain? Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. Ascorbic acid: a metabolite switch for designing stress-smart crops. Microbial alchemy: upcycling of brewery spent grains into high-value products through fermentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1