光能促进无性繁殖,并介导双壳贝母的转录组变化。

IF 2.7 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Research Pub Date : 2024-11-01 Epub Date: 2024-08-20 DOI:10.1007/s10265-024-01567-8
Akari Masaki, Narumi Miyamoto, Sridharan Harshavardhini, Noriko Nagata, Yuki Tsuchikane, Hiroyuki Sekimoto, Yutaka Kodama, Tomohiro Suzuki, Tomoko Shinomura
{"title":"光能促进无性繁殖,并介导双壳贝母的转录组变化。","authors":"Akari Masaki, Narumi Miyamoto, Sridharan Harshavardhini, Noriko Nagata, Yuki Tsuchikane, Hiroyuki Sekimoto, Yutaka Kodama, Tomohiro Suzuki, Tomoko Shinomura","doi":"10.1007/s10265-024-01567-8","DOIUrl":null,"url":null,"abstract":"<p><p>The green alga Pediastrum duplex forms colonies through asexual reproduction and has a unique life cycle. To elucidate the mechanisms that regulate the asexual reproductive cycle in P. duplex, we analyzed the effects of light on the processes and gene expression involved in each step of the asexual reproductive cycle, revealing light irradiation to be essential for increasing the number of colonies. Among the processes in the asexual reproductive cycle, the transition from cell hypertrophy to zoospore formation could proceed even in the dark if glucose was added to the medium. Transcriptome analysis revealed that the expression of different groups of genes was significantly promoted or suppressed before and after the number of colonies increased. Our findings indicate that the asexual reproductive cycle of P. duplex includes a process promoted by photosynthesis. This study enhances our understanding of the growth characteristics of P. duplex and other microalgae.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"1127-1135"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light promotes asexual reproduction and mediates transcriptomic changes in Pediastrum duplex.\",\"authors\":\"Akari Masaki, Narumi Miyamoto, Sridharan Harshavardhini, Noriko Nagata, Yuki Tsuchikane, Hiroyuki Sekimoto, Yutaka Kodama, Tomohiro Suzuki, Tomoko Shinomura\",\"doi\":\"10.1007/s10265-024-01567-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The green alga Pediastrum duplex forms colonies through asexual reproduction and has a unique life cycle. To elucidate the mechanisms that regulate the asexual reproductive cycle in P. duplex, we analyzed the effects of light on the processes and gene expression involved in each step of the asexual reproductive cycle, revealing light irradiation to be essential for increasing the number of colonies. Among the processes in the asexual reproductive cycle, the transition from cell hypertrophy to zoospore formation could proceed even in the dark if glucose was added to the medium. Transcriptome analysis revealed that the expression of different groups of genes was significantly promoted or suppressed before and after the number of colonies increased. Our findings indicate that the asexual reproductive cycle of P. duplex includes a process promoted by photosynthesis. This study enhances our understanding of the growth characteristics of P. duplex and other microalgae.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":\" \",\"pages\":\"1127-1135\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-024-01567-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01567-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

双子叶绿藻(Pediastrum duplex)通过无性繁殖形成菌落,具有独特的生命周期。为了阐明双子叶绿藻无性生殖周期的调控机制,我们分析了光照对无性生殖周期各阶段过程和基因表达的影响,发现光照对增加菌落数量至关重要。在无性繁殖周期的过程中,如果在培养基中添加葡萄糖,即使在黑暗中也能完成从细胞肥大到形成孢子的过渡。转录组分析表明,在菌落数量增加前后,不同基因组的表达明显受到促进或抑制。我们的研究结果表明,双孢蘑菇的无性繁殖周期包括一个由光合作用促进的过程。这项研究加深了我们对双子叶藻和其他微藻生长特性的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light promotes asexual reproduction and mediates transcriptomic changes in Pediastrum duplex.

The green alga Pediastrum duplex forms colonies through asexual reproduction and has a unique life cycle. To elucidate the mechanisms that regulate the asexual reproductive cycle in P. duplex, we analyzed the effects of light on the processes and gene expression involved in each step of the asexual reproductive cycle, revealing light irradiation to be essential for increasing the number of colonies. Among the processes in the asexual reproductive cycle, the transition from cell hypertrophy to zoospore formation could proceed even in the dark if glucose was added to the medium. Transcriptome analysis revealed that the expression of different groups of genes was significantly promoted or suppressed before and after the number of colonies increased. Our findings indicate that the asexual reproductive cycle of P. duplex includes a process promoted by photosynthesis. This study enhances our understanding of the growth characteristics of P. duplex and other microalgae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
期刊最新文献
Phenotypic plasticity does not prevent impairment of aboveground biomass production due to increased light and water deficit in Dimorphandra exaltata, an endangered species. Exploring sugar allocation and metabolic shifts in cassava plants infected with Cassava common mosaic virus (CsCMV) under long-day photoperiod: diel changes in source and sink leaves. Generation of viable hypomorphic and null mutant plants via CRISPR-Cas9 targeting mRNA splicing sites. Correction to: Identification and functional analysis of the Dof transcription factor genes in sugar beet. Comparative transcriptome reveals lignin biosynthesis being the key molecular pathway regulating oilseed rape growth treated by SiO2 NPs and biochar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1