{"title":"麻风病随机模型中受感染许旺细胞消亡和遗传随机性的启示。","authors":"Salil Ghosh , Sourav Rana , Satyajit Mukherjee , Priti Kumar Roy","doi":"10.1016/j.mbs.2024.109281","DOIUrl":null,"url":null,"abstract":"<div><p>Investigating disease progression, transmission of infection and impacts of Multidrug Therapy (MDT) to inhibit demyelination in leprosy involves a certain amount of difficulty in terms of the in-built uncertain complicated and complex intracellular cell dynamical interactions. To tackle this scenario and to elucidate a more realistic, rationalistic approach of examining the infection mechanism and associated drug therapeutic interventions, we propose a four-dimensional ordinary differential equation-based model. Stochastic processes has been employed on this deterministic system by formulating the Kolmogorov forward equation introducing a transition state and the quasi-stationary distribution, exact distribution analysis have been investigated which allow us to estimate an expected time to extinction of the infected Schwann cells into the human body more prominently. Additionally, to explore the impact of uncertainty in the key intracellular factors, the stochastic system is investigated incorporating random perturbations and environmental noises in the disease dissemination, proliferation and reinfection rates. Rigorous numerical simulations validating the analytical outcomes provide us significant novel insights on the progression of leprosy and unravelling the existing major treatment complexities. Analytical experiments along with the simulations utilizing Monte-Carlo method and Euler–Maruyama scheme involving stochasticity predicts that the bacterial density is underestimated due to the recurrence of infection and suggests that maintaining a drug-efficacy rate in the range <span><math><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></math></span> would be substantially efficacious in eradicating leprosy.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights of infected Schwann cells extinction and inherited randomness in a stochastic model of leprosy\",\"authors\":\"Salil Ghosh , Sourav Rana , Satyajit Mukherjee , Priti Kumar Roy\",\"doi\":\"10.1016/j.mbs.2024.109281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Investigating disease progression, transmission of infection and impacts of Multidrug Therapy (MDT) to inhibit demyelination in leprosy involves a certain amount of difficulty in terms of the in-built uncertain complicated and complex intracellular cell dynamical interactions. To tackle this scenario and to elucidate a more realistic, rationalistic approach of examining the infection mechanism and associated drug therapeutic interventions, we propose a four-dimensional ordinary differential equation-based model. Stochastic processes has been employed on this deterministic system by formulating the Kolmogorov forward equation introducing a transition state and the quasi-stationary distribution, exact distribution analysis have been investigated which allow us to estimate an expected time to extinction of the infected Schwann cells into the human body more prominently. Additionally, to explore the impact of uncertainty in the key intracellular factors, the stochastic system is investigated incorporating random perturbations and environmental noises in the disease dissemination, proliferation and reinfection rates. Rigorous numerical simulations validating the analytical outcomes provide us significant novel insights on the progression of leprosy and unravelling the existing major treatment complexities. Analytical experiments along with the simulations utilizing Monte-Carlo method and Euler–Maruyama scheme involving stochasticity predicts that the bacterial density is underestimated due to the recurrence of infection and suggests that maintaining a drug-efficacy rate in the range <span><math><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></math></span> would be substantially efficacious in eradicating leprosy.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002555642400141X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002555642400141X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Insights of infected Schwann cells extinction and inherited randomness in a stochastic model of leprosy
Investigating disease progression, transmission of infection and impacts of Multidrug Therapy (MDT) to inhibit demyelination in leprosy involves a certain amount of difficulty in terms of the in-built uncertain complicated and complex intracellular cell dynamical interactions. To tackle this scenario and to elucidate a more realistic, rationalistic approach of examining the infection mechanism and associated drug therapeutic interventions, we propose a four-dimensional ordinary differential equation-based model. Stochastic processes has been employed on this deterministic system by formulating the Kolmogorov forward equation introducing a transition state and the quasi-stationary distribution, exact distribution analysis have been investigated which allow us to estimate an expected time to extinction of the infected Schwann cells into the human body more prominently. Additionally, to explore the impact of uncertainty in the key intracellular factors, the stochastic system is investigated incorporating random perturbations and environmental noises in the disease dissemination, proliferation and reinfection rates. Rigorous numerical simulations validating the analytical outcomes provide us significant novel insights on the progression of leprosy and unravelling the existing major treatment complexities. Analytical experiments along with the simulations utilizing Monte-Carlo method and Euler–Maruyama scheme involving stochasticity predicts that the bacterial density is underestimated due to the recurrence of infection and suggests that maintaining a drug-efficacy rate in the range would be substantially efficacious in eradicating leprosy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.