Huihuang Wu , Haozhe Yang , Xiurong Hu , Yuhan Zhou , Xian Wang , Junfeng Liu , Ying Liu , Shu Tao
{"title":"电气化可行性与气候政策相互作用的省级分析","authors":"Huihuang Wu , Haozhe Yang , Xiurong Hu , Yuhan Zhou , Xian Wang , Junfeng Liu , Ying Liu , Shu Tao","doi":"10.1016/j.ese.2024.100474","DOIUrl":null,"url":null,"abstract":"<div><p>Improving electrification feasibility is essential for reducing emissions from non-electric energy sources, thereby enhancing air quality and public health. Concurrently, climate mitigation actions, such as carbon pricing policies, have significant potential to alleviate increasing carbon dioxide (CO<sub>2</sub>) and other co-emitted air pollutants. However, the interactions between climate policy and the improvement of electrification feasibility at the provincial level remain unclear, collectively impacting the net-zero transition of energy-intensive sectors. Here we combine a technologically rich economic-energy-environment model with air quality modeling across China to examine the health, climate, and economic implications of large-scale upgrades in electrification feasibility and climate policies from 2017 to 2030. The results indicate that advancing electrification feasibility, coupled with adopting carbon pricing policies, is likely to facilitate a transition towards electricity-dominant energy systems. Improved electrification feasibility is projected to yield a 7–25% increase in nationwide climate benefits and a 5–14% increase in health benefits by 2030. These incremental benefits, coupled with reduced economic costs, result in a 22–68% increase in net benefits. However, regionally, improvements in electrification feasibility will lead to heightened power demand and unintended emissions from electric energy production in certain provinces (e.g., Nei Mongol) due to the coal-dominated power system. Additionally, in major coal-producing provinces like Shanxi and Shaanxi, enhanced electrification feasibility exacerbates the negative economic impacts of climate policies. This study provides quantitative insights into how improving electrification feasibility reshapes energy evolution and the benefit-cost profile of climate policy at the provincial level. The findings underscore the necessity of a well-designed compensation scheme between affected and unaffected provinces and coordinated emission mitigation across the power and other end-use sectors.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100474"},"PeriodicalIF":14.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000887/pdfft?md5=4a4f6f14d4534869ddd61d5c3dba212c&pid=1-s2.0-S2666498424000887-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Provincial-Level Analysis of Electrification Feasibility and Climate Policy Interactions\",\"authors\":\"Huihuang Wu , Haozhe Yang , Xiurong Hu , Yuhan Zhou , Xian Wang , Junfeng Liu , Ying Liu , Shu Tao\",\"doi\":\"10.1016/j.ese.2024.100474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Improving electrification feasibility is essential for reducing emissions from non-electric energy sources, thereby enhancing air quality and public health. Concurrently, climate mitigation actions, such as carbon pricing policies, have significant potential to alleviate increasing carbon dioxide (CO<sub>2</sub>) and other co-emitted air pollutants. However, the interactions between climate policy and the improvement of electrification feasibility at the provincial level remain unclear, collectively impacting the net-zero transition of energy-intensive sectors. Here we combine a technologically rich economic-energy-environment model with air quality modeling across China to examine the health, climate, and economic implications of large-scale upgrades in electrification feasibility and climate policies from 2017 to 2030. The results indicate that advancing electrification feasibility, coupled with adopting carbon pricing policies, is likely to facilitate a transition towards electricity-dominant energy systems. Improved electrification feasibility is projected to yield a 7–25% increase in nationwide climate benefits and a 5–14% increase in health benefits by 2030. These incremental benefits, coupled with reduced economic costs, result in a 22–68% increase in net benefits. However, regionally, improvements in electrification feasibility will lead to heightened power demand and unintended emissions from electric energy production in certain provinces (e.g., Nei Mongol) due to the coal-dominated power system. Additionally, in major coal-producing provinces like Shanxi and Shaanxi, enhanced electrification feasibility exacerbates the negative economic impacts of climate policies. This study provides quantitative insights into how improving electrification feasibility reshapes energy evolution and the benefit-cost profile of climate policy at the provincial level. The findings underscore the necessity of a well-designed compensation scheme between affected and unaffected provinces and coordinated emission mitigation across the power and other end-use sectors.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"22 \",\"pages\":\"Article 100474\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666498424000887/pdfft?md5=4a4f6f14d4534869ddd61d5c3dba212c&pid=1-s2.0-S2666498424000887-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498424000887\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000887","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Provincial-Level Analysis of Electrification Feasibility and Climate Policy Interactions
Improving electrification feasibility is essential for reducing emissions from non-electric energy sources, thereby enhancing air quality and public health. Concurrently, climate mitigation actions, such as carbon pricing policies, have significant potential to alleviate increasing carbon dioxide (CO2) and other co-emitted air pollutants. However, the interactions between climate policy and the improvement of electrification feasibility at the provincial level remain unclear, collectively impacting the net-zero transition of energy-intensive sectors. Here we combine a technologically rich economic-energy-environment model with air quality modeling across China to examine the health, climate, and economic implications of large-scale upgrades in electrification feasibility and climate policies from 2017 to 2030. The results indicate that advancing electrification feasibility, coupled with adopting carbon pricing policies, is likely to facilitate a transition towards electricity-dominant energy systems. Improved electrification feasibility is projected to yield a 7–25% increase in nationwide climate benefits and a 5–14% increase in health benefits by 2030. These incremental benefits, coupled with reduced economic costs, result in a 22–68% increase in net benefits. However, regionally, improvements in electrification feasibility will lead to heightened power demand and unintended emissions from electric energy production in certain provinces (e.g., Nei Mongol) due to the coal-dominated power system. Additionally, in major coal-producing provinces like Shanxi and Shaanxi, enhanced electrification feasibility exacerbates the negative economic impacts of climate policies. This study provides quantitative insights into how improving electrification feasibility reshapes energy evolution and the benefit-cost profile of climate policy at the provincial level. The findings underscore the necessity of a well-designed compensation scheme between affected and unaffected provinces and coordinated emission mitigation across the power and other end-use sectors.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.