Jingjie Zhang , Huiting Chen , Nguyen Viet Tung , Amrita Pal , Xuan Wang , Hanyu Ju , Yiliang He , Karina Yew-Hoong Gin
{"title":"利用三维水动力和水质模型确定水生生态系统中全氟辛烷磺酸的特征","authors":"Jingjie Zhang , Huiting Chen , Nguyen Viet Tung , Amrita Pal , Xuan Wang , Hanyu Ju , Yiliang He , Karina Yew-Hoong Gin","doi":"10.1016/j.ese.2024.100473","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding how per- and polyfluoroalkyl substances (PFASs) enter aquatic ecosystems is challenging due to the complex interplay of physical, chemical, and biological processes, as well as the influence of hydraulic and hydrological factors and pollution sources at the catchment scale. The spatiotemporal dynamics of PFASs across various media remain largely unknown. Here we show the fate and transport mechanisms of PFASs by integrating monitoring data from an estuarine reservoir in Singapore into a detailed 3D model. This model incorporates hydrological, hydrodynamic, and water quality processes to quantify the distributions of total PFASs, including the major components perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), across water, particulate matter, and sediments within the reservoir. Our results, validated against four years of field measurements with most relative average deviations below 40%, demonstrate that this integrated approach effectively characterizes the occurrence, sources, sinks, and trends of PFASs. The majority of PFASs are found in the dissolved phase (>95%), followed by fractions sorbed to organic particles like detritus (1.0–3.5%) and phytoplankton (1–2%). We also assess the potential risks in both the water column and sediments of the reservoir. The risk quotients for PFOS and PFOA are <0.32 and < 0.00016, respectively, indicating an acceptable risk level for PFASs in this water body. The reservoir also exhibits substantial buffering capacity, even with a tenfold increase in external loading, particularly in managing the risks associated with PFOA compared to PFOS. This study not only enhances our understanding of the mechanisms influencing the fate and transport of surfactant contaminants but also establishes a framework for future research to explore how dominant environmental factors and processes can mitigate emerging contaminants in aquatic ecosystems.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100473"},"PeriodicalIF":14.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000875/pdfft?md5=8dedf1caff962cdce4af0e5ccfcb2555&pid=1-s2.0-S2666498424000875-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterizing PFASs in aquatic ecosystems with 3D hydrodynamic and water quality models\",\"authors\":\"Jingjie Zhang , Huiting Chen , Nguyen Viet Tung , Amrita Pal , Xuan Wang , Hanyu Ju , Yiliang He , Karina Yew-Hoong Gin\",\"doi\":\"10.1016/j.ese.2024.100473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding how per- and polyfluoroalkyl substances (PFASs) enter aquatic ecosystems is challenging due to the complex interplay of physical, chemical, and biological processes, as well as the influence of hydraulic and hydrological factors and pollution sources at the catchment scale. The spatiotemporal dynamics of PFASs across various media remain largely unknown. Here we show the fate and transport mechanisms of PFASs by integrating monitoring data from an estuarine reservoir in Singapore into a detailed 3D model. This model incorporates hydrological, hydrodynamic, and water quality processes to quantify the distributions of total PFASs, including the major components perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), across water, particulate matter, and sediments within the reservoir. Our results, validated against four years of field measurements with most relative average deviations below 40%, demonstrate that this integrated approach effectively characterizes the occurrence, sources, sinks, and trends of PFASs. The majority of PFASs are found in the dissolved phase (>95%), followed by fractions sorbed to organic particles like detritus (1.0–3.5%) and phytoplankton (1–2%). We also assess the potential risks in both the water column and sediments of the reservoir. The risk quotients for PFOS and PFOA are <0.32 and < 0.00016, respectively, indicating an acceptable risk level for PFASs in this water body. The reservoir also exhibits substantial buffering capacity, even with a tenfold increase in external loading, particularly in managing the risks associated with PFOA compared to PFOS. This study not only enhances our understanding of the mechanisms influencing the fate and transport of surfactant contaminants but also establishes a framework for future research to explore how dominant environmental factors and processes can mitigate emerging contaminants in aquatic ecosystems.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"22 \",\"pages\":\"Article 100473\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666498424000875/pdfft?md5=8dedf1caff962cdce4af0e5ccfcb2555&pid=1-s2.0-S2666498424000875-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498424000875\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000875","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Characterizing PFASs in aquatic ecosystems with 3D hydrodynamic and water quality models
Understanding how per- and polyfluoroalkyl substances (PFASs) enter aquatic ecosystems is challenging due to the complex interplay of physical, chemical, and biological processes, as well as the influence of hydraulic and hydrological factors and pollution sources at the catchment scale. The spatiotemporal dynamics of PFASs across various media remain largely unknown. Here we show the fate and transport mechanisms of PFASs by integrating monitoring data from an estuarine reservoir in Singapore into a detailed 3D model. This model incorporates hydrological, hydrodynamic, and water quality processes to quantify the distributions of total PFASs, including the major components perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), across water, particulate matter, and sediments within the reservoir. Our results, validated against four years of field measurements with most relative average deviations below 40%, demonstrate that this integrated approach effectively characterizes the occurrence, sources, sinks, and trends of PFASs. The majority of PFASs are found in the dissolved phase (>95%), followed by fractions sorbed to organic particles like detritus (1.0–3.5%) and phytoplankton (1–2%). We also assess the potential risks in both the water column and sediments of the reservoir. The risk quotients for PFOS and PFOA are <0.32 and < 0.00016, respectively, indicating an acceptable risk level for PFASs in this water body. The reservoir also exhibits substantial buffering capacity, even with a tenfold increase in external loading, particularly in managing the risks associated with PFOA compared to PFOS. This study not only enhances our understanding of the mechanisms influencing the fate and transport of surfactant contaminants but also establishes a framework for future research to explore how dominant environmental factors and processes can mitigate emerging contaminants in aquatic ecosystems.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.