Lorenzo Scandola, Maximilian Erber, Philipp Hagenlocher, Florian Steinlehner, Wolfram Volk
{"title":"通过提取中心点和利用 NURBS 曲线重构自由形态弯曲部件的弯曲线","authors":"Lorenzo Scandola, Maximilian Erber, Philipp Hagenlocher, Florian Steinlehner, Wolfram Volk","doi":"10.1016/j.gmod.2024.101227","DOIUrl":null,"url":null,"abstract":"<div><p>Free-form bending belongs to the kinematics-based forming processes and allows the manufacturing of arbitrary 3D-bent components. To obtain the desired part, the tool kinematics is adjusted by comparing the target and obtained bending line. While the target geometry consists of parametric CAD data, the obtained geometry is a surface mesh, making the bending line extraction a challenging task. In this paper the reconstruction of the bending line for free-form bent components is presented. The strategy relies on the extraction of the centroids, for which a ray casting algorithm is developed and compared to an existing Voronoi-based method. Subsequently the obtained points are used to fit a NURBS parametric model of the curve. The algorithm parameters are investigated with a sensitivity analysis, and its performance is evaluated with a defined error metric. Finally, the strategy is validated comparing its results with a Voronoi-based algorithm, and investigating different cross-sections and geometries.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"135 ","pages":"Article 101227"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000158/pdfft?md5=5ae58aca47e71146ef63b6cd34d29835&pid=1-s2.0-S1524070324000158-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of the bending line for free-form bent components extracting the centroids and exploiting NURBS curves\",\"authors\":\"Lorenzo Scandola, Maximilian Erber, Philipp Hagenlocher, Florian Steinlehner, Wolfram Volk\",\"doi\":\"10.1016/j.gmod.2024.101227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Free-form bending belongs to the kinematics-based forming processes and allows the manufacturing of arbitrary 3D-bent components. To obtain the desired part, the tool kinematics is adjusted by comparing the target and obtained bending line. While the target geometry consists of parametric CAD data, the obtained geometry is a surface mesh, making the bending line extraction a challenging task. In this paper the reconstruction of the bending line for free-form bent components is presented. The strategy relies on the extraction of the centroids, for which a ray casting algorithm is developed and compared to an existing Voronoi-based method. Subsequently the obtained points are used to fit a NURBS parametric model of the curve. The algorithm parameters are investigated with a sensitivity analysis, and its performance is evaluated with a defined error metric. Finally, the strategy is validated comparing its results with a Voronoi-based algorithm, and investigating different cross-sections and geometries.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"135 \",\"pages\":\"Article 101227\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1524070324000158/pdfft?md5=5ae58aca47e71146ef63b6cd34d29835&pid=1-s2.0-S1524070324000158-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070324000158\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000158","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Reconstruction of the bending line for free-form bent components extracting the centroids and exploiting NURBS curves
Free-form bending belongs to the kinematics-based forming processes and allows the manufacturing of arbitrary 3D-bent components. To obtain the desired part, the tool kinematics is adjusted by comparing the target and obtained bending line. While the target geometry consists of parametric CAD data, the obtained geometry is a surface mesh, making the bending line extraction a challenging task. In this paper the reconstruction of the bending line for free-form bent components is presented. The strategy relies on the extraction of the centroids, for which a ray casting algorithm is developed and compared to an existing Voronoi-based method. Subsequently the obtained points are used to fit a NURBS parametric model of the curve. The algorithm parameters are investigated with a sensitivity analysis, and its performance is evaluated with a defined error metric. Finally, the strategy is validated comparing its results with a Voronoi-based algorithm, and investigating different cross-sections and geometries.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.