婴儿早期多站点脑电图研究:提高数据质量的方法

IF 4.6 2区 医学 Q1 NEUROSCIENCES Developmental Cognitive Neuroscience Pub Date : 2024-07-31 DOI:10.1016/j.dcn.2024.101425
Abigail Dickinson , Madison Booth , Manjari Daniel , Alana Campbell , Neely Miller , Bonnie Lau , John Zempel , Sara Jane Webb , Jed Elison , Adrian K.C. Lee , Annette Estes , Stephen Dager , Heather Hazlett , Jason Wolff , Robert Schultz , Natasha Marrus , Alan Evans , Joseph Piven , John R. Pruett Jr. , Shafali Jeste
{"title":"婴儿早期多站点脑电图研究:提高数据质量的方法","authors":"Abigail Dickinson ,&nbsp;Madison Booth ,&nbsp;Manjari Daniel ,&nbsp;Alana Campbell ,&nbsp;Neely Miller ,&nbsp;Bonnie Lau ,&nbsp;John Zempel ,&nbsp;Sara Jane Webb ,&nbsp;Jed Elison ,&nbsp;Adrian K.C. Lee ,&nbsp;Annette Estes ,&nbsp;Stephen Dager ,&nbsp;Heather Hazlett ,&nbsp;Jason Wolff ,&nbsp;Robert Schultz ,&nbsp;Natasha Marrus ,&nbsp;Alan Evans ,&nbsp;Joseph Piven ,&nbsp;John R. Pruett Jr. ,&nbsp;Shafali Jeste","doi":"10.1016/j.dcn.2024.101425","DOIUrl":null,"url":null,"abstract":"<div><p>Brain differences linked to autism spectrum disorder (ASD) can manifest before observable symptoms. Studying these early neural precursors in larger and more diverse cohorts is crucial for advancing our understanding of developmental pathways and potentially facilitating earlier identification. EEG is an ideal tool for investigating early neural differences in ASD, given its scalability and high tolerability in infant populations. In this context, we integrated EEG into an existing multi-site MRI study of infants with a higher familial likelihood of developing ASD. This paper describes the comprehensive protocol established to collect longitudinal, high-density EEG data from infants across five sites as part of the Infant Brain Imaging Study (IBIS) Network and reports interim feasibility and data quality results. We evaluated feasibility by measuring the percentage of infants from whom we successfully collected each EEG paradigm. The quality of task-free data was assessed based on the duration of EEG recordings remaining after artifact removal. Preliminary analyses revealed low data loss, with average in-session loss rates at 4.16 % and quality control loss rates at 11.66 %. Overall, the task-free data retention rate, accounting for both in-session issues and quality control, was 84.16 %, with high consistency across sites. The insights gained from this preliminary analysis highlight key sources of data attrition and provide practical considerations to guide similar research endeavors.</p></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"69 ","pages":"Article 101425"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878929324000860/pdfft?md5=daad638696e4951e615ee4d1e83ca036&pid=1-s2.0-S1878929324000860-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-site EEG studies in early infancy: Methods to enhance data quality\",\"authors\":\"Abigail Dickinson ,&nbsp;Madison Booth ,&nbsp;Manjari Daniel ,&nbsp;Alana Campbell ,&nbsp;Neely Miller ,&nbsp;Bonnie Lau ,&nbsp;John Zempel ,&nbsp;Sara Jane Webb ,&nbsp;Jed Elison ,&nbsp;Adrian K.C. Lee ,&nbsp;Annette Estes ,&nbsp;Stephen Dager ,&nbsp;Heather Hazlett ,&nbsp;Jason Wolff ,&nbsp;Robert Schultz ,&nbsp;Natasha Marrus ,&nbsp;Alan Evans ,&nbsp;Joseph Piven ,&nbsp;John R. Pruett Jr. ,&nbsp;Shafali Jeste\",\"doi\":\"10.1016/j.dcn.2024.101425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Brain differences linked to autism spectrum disorder (ASD) can manifest before observable symptoms. Studying these early neural precursors in larger and more diverse cohorts is crucial for advancing our understanding of developmental pathways and potentially facilitating earlier identification. EEG is an ideal tool for investigating early neural differences in ASD, given its scalability and high tolerability in infant populations. In this context, we integrated EEG into an existing multi-site MRI study of infants with a higher familial likelihood of developing ASD. This paper describes the comprehensive protocol established to collect longitudinal, high-density EEG data from infants across five sites as part of the Infant Brain Imaging Study (IBIS) Network and reports interim feasibility and data quality results. We evaluated feasibility by measuring the percentage of infants from whom we successfully collected each EEG paradigm. The quality of task-free data was assessed based on the duration of EEG recordings remaining after artifact removal. Preliminary analyses revealed low data loss, with average in-session loss rates at 4.16 % and quality control loss rates at 11.66 %. Overall, the task-free data retention rate, accounting for both in-session issues and quality control, was 84.16 %, with high consistency across sites. The insights gained from this preliminary analysis highlight key sources of data attrition and provide practical considerations to guide similar research endeavors.</p></div>\",\"PeriodicalId\":49083,\"journal\":{\"name\":\"Developmental Cognitive Neuroscience\",\"volume\":\"69 \",\"pages\":\"Article 101425\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1878929324000860/pdfft?md5=daad638696e4951e615ee4d1e83ca036&pid=1-s2.0-S1878929324000860-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878929324000860\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929324000860","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

与自闭症谱系障碍(ASD)有关的大脑差异可能在出现可观察到的症状之前就已显现。在更大范围和更多样化的群体中研究这些早期神经前兆对于加深我们对发育途径的理解和促进早期识别至关重要。脑电图是研究 ASD 早期神经差异的理想工具,因为它在婴儿群体中具有可扩展性和高耐受性。在此背景下,我们将脑电图纳入了一项针对有较高家族性 ASD 发病可能性的婴儿的现有多点核磁共振成像研究。本文介绍了作为婴儿脑成像研究(IBIS)网络的一部分,为收集五个地点婴儿的纵向高密度脑电图数据而制定的综合方案,并报告了中期可行性和数据质量结果。我们通过测量成功收集每个脑电图范例的婴儿比例来评估可行性。无任务数据的质量是根据去除伪影后剩余的脑电图记录时间来评估的。初步分析表明,数据丢失率较低,平均会话丢失率为 4.16%,质量控制丢失率为 11.66%。总体而言,考虑到会话过程中的问题和质量控制,无任务数据保留率为 84.16%,各站点之间的一致性很高。从这一初步分析中获得的启示强调了数据损耗的关键来源,并为指导类似的研究工作提供了实用的考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-site EEG studies in early infancy: Methods to enhance data quality

Brain differences linked to autism spectrum disorder (ASD) can manifest before observable symptoms. Studying these early neural precursors in larger and more diverse cohorts is crucial for advancing our understanding of developmental pathways and potentially facilitating earlier identification. EEG is an ideal tool for investigating early neural differences in ASD, given its scalability and high tolerability in infant populations. In this context, we integrated EEG into an existing multi-site MRI study of infants with a higher familial likelihood of developing ASD. This paper describes the comprehensive protocol established to collect longitudinal, high-density EEG data from infants across five sites as part of the Infant Brain Imaging Study (IBIS) Network and reports interim feasibility and data quality results. We evaluated feasibility by measuring the percentage of infants from whom we successfully collected each EEG paradigm. The quality of task-free data was assessed based on the duration of EEG recordings remaining after artifact removal. Preliminary analyses revealed low data loss, with average in-session loss rates at 4.16 % and quality control loss rates at 11.66 %. Overall, the task-free data retention rate, accounting for both in-session issues and quality control, was 84.16 %, with high consistency across sites. The insights gained from this preliminary analysis highlight key sources of data attrition and provide practical considerations to guide similar research endeavors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
10.60%
发文量
124
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.
期刊最新文献
Establishing a model of peer support for pregnant persons with a substance use disorder as an innovative approach for engaging participants in the healthy brain and child development study. Co-developing sleep-wake and sensory foundations for cognition in the human fetus and newborn. State-dependent inter-network functional connectivity development in neonatal brain from the developing human connectome project. How will developmental neuroimaging contribute to the prediction of neurodevelopmental or psychiatric disorders? Challenges and opportunities. Harmonizing multisite neonatal diffusion-weighted brain MRI data for developmental neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1