{"title":"荧光显微镜图像语义分割中深度神经网络鲁棒性的基准测试。","authors":"Liqun Zhong, Lingrui Li, Ge Yang","doi":"10.1186/s12859-024-05894-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fluorescence microscopy (FM) is an important and widely adopted biological imaging technique. Segmentation is often the first step in quantitative analysis of FM images. Deep neural networks (DNNs) have become the state-of-the-art tools for image segmentation. However, their performance on natural images may collapse under certain image corruptions or adversarial attacks. This poses real risks to their deployment in real-world applications. Although the robustness of DNN models in segmenting natural images has been studied extensively, their robustness in segmenting FM images remains poorly understood RESULTS: To address this deficiency, we have developed an assay that benchmarks robustness of DNN segmentation models using datasets of realistic synthetic 2D FM images with precisely controlled corruptions or adversarial attacks. Using this assay, we have benchmarked robustness of ten representative models such as DeepLab and Vision Transformer. We find that models with good robustness on natural images may perform poorly on FM images. We also find new robustness properties of DNN models and new connections between their corruption robustness and adversarial robustness. To further assess the robustness of the selected models, we have also benchmarked them on real microscopy images of different modalities without using simulated degradation. The results are consistent with those obtained on the realistic synthetic images, confirming the fidelity and reliability of our image synthesis method as well as the effectiveness of our assay.</p><p><strong>Conclusions: </strong>Based on comprehensive benchmarking experiments, we have found distinct robustness properties of deep neural networks in semantic segmentation of FM images. Based on the findings, we have made specific recommendations on selection and design of robust models for FM image segmentation.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334404/pdf/","citationCount":"0","resultStr":"{\"title\":\"Benchmarking robustness of deep neural networks in semantic segmentation of fluorescence microscopy images.\",\"authors\":\"Liqun Zhong, Lingrui Li, Ge Yang\",\"doi\":\"10.1186/s12859-024-05894-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Fluorescence microscopy (FM) is an important and widely adopted biological imaging technique. Segmentation is often the first step in quantitative analysis of FM images. Deep neural networks (DNNs) have become the state-of-the-art tools for image segmentation. However, their performance on natural images may collapse under certain image corruptions or adversarial attacks. This poses real risks to their deployment in real-world applications. Although the robustness of DNN models in segmenting natural images has been studied extensively, their robustness in segmenting FM images remains poorly understood RESULTS: To address this deficiency, we have developed an assay that benchmarks robustness of DNN segmentation models using datasets of realistic synthetic 2D FM images with precisely controlled corruptions or adversarial attacks. Using this assay, we have benchmarked robustness of ten representative models such as DeepLab and Vision Transformer. We find that models with good robustness on natural images may perform poorly on FM images. We also find new robustness properties of DNN models and new connections between their corruption robustness and adversarial robustness. To further assess the robustness of the selected models, we have also benchmarked them on real microscopy images of different modalities without using simulated degradation. The results are consistent with those obtained on the realistic synthetic images, confirming the fidelity and reliability of our image synthesis method as well as the effectiveness of our assay.</p><p><strong>Conclusions: </strong>Based on comprehensive benchmarking experiments, we have found distinct robustness properties of deep neural networks in semantic segmentation of FM images. Based on the findings, we have made specific recommendations on selection and design of robust models for FM image segmentation.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334404/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05894-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05894-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Benchmarking robustness of deep neural networks in semantic segmentation of fluorescence microscopy images.
Background: Fluorescence microscopy (FM) is an important and widely adopted biological imaging technique. Segmentation is often the first step in quantitative analysis of FM images. Deep neural networks (DNNs) have become the state-of-the-art tools for image segmentation. However, their performance on natural images may collapse under certain image corruptions or adversarial attacks. This poses real risks to their deployment in real-world applications. Although the robustness of DNN models in segmenting natural images has been studied extensively, their robustness in segmenting FM images remains poorly understood RESULTS: To address this deficiency, we have developed an assay that benchmarks robustness of DNN segmentation models using datasets of realistic synthetic 2D FM images with precisely controlled corruptions or adversarial attacks. Using this assay, we have benchmarked robustness of ten representative models such as DeepLab and Vision Transformer. We find that models with good robustness on natural images may perform poorly on FM images. We also find new robustness properties of DNN models and new connections between their corruption robustness and adversarial robustness. To further assess the robustness of the selected models, we have also benchmarked them on real microscopy images of different modalities without using simulated degradation. The results are consistent with those obtained on the realistic synthetic images, confirming the fidelity and reliability of our image synthesis method as well as the effectiveness of our assay.
Conclusions: Based on comprehensive benchmarking experiments, we have found distinct robustness properties of deep neural networks in semantic segmentation of FM images. Based on the findings, we have made specific recommendations on selection and design of robust models for FM image segmentation.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.