{"title":"云计算任务调度的深度学习和优化多目标。","authors":"Dinesh Komarasamy, Siva Malar Ramaganthan, Dharani Molapalayam Kandaswamy, Gokuldhev Mony","doi":"10.1080/0954898X.2024.2391395","DOIUrl":null,"url":null,"abstract":"<p><p>In cloud computing (CC), task scheduling allocates the task to best suitable resource for execution. This article proposes a model for task scheduling utilizing the multi-objective optimization and deep learning (DL) model. Initially, the multi-objective task scheduling is carried out by the incoming user utilizing the proposed hybrid fractional flamingo beetle optimization (FFBO) which is formed by integrating dung beetle optimization (DBO), flamingo search algorithm (FSA) and fractional calculus (FC). Here, the fitness function depends on reliability, cost, predicted energy, and makespan, the predicted energy is forecasted by a deep residual network (DRN). Thereafter, task scheduling is accomplished based on DL using the proposed deep feedforward neural network fused long short-term memory (DFNN-LSTM), which is the combination of DFNN and LSTM. Moreover, when scheduling the workflow, the task parameters and the virtual machine's (VM) live parameters are taken into consideration. Task parameters are earliest finish time (EFT), earliest start time (EST), task length, task priority, and actual task running time, whereas VM parameters include memory utilization, bandwidth utilization, capacity, and central processing unit (CPU). The proposed model DFNN-LSTM+FFBO has achieved superior makespan, energy, and resource utilization of 0.188, 0.950J, and 0.238, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-30"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning and optimization enabled multi-objective for task scheduling in cloud computing.\",\"authors\":\"Dinesh Komarasamy, Siva Malar Ramaganthan, Dharani Molapalayam Kandaswamy, Gokuldhev Mony\",\"doi\":\"10.1080/0954898X.2024.2391395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cloud computing (CC), task scheduling allocates the task to best suitable resource for execution. This article proposes a model for task scheduling utilizing the multi-objective optimization and deep learning (DL) model. Initially, the multi-objective task scheduling is carried out by the incoming user utilizing the proposed hybrid fractional flamingo beetle optimization (FFBO) which is formed by integrating dung beetle optimization (DBO), flamingo search algorithm (FSA) and fractional calculus (FC). Here, the fitness function depends on reliability, cost, predicted energy, and makespan, the predicted energy is forecasted by a deep residual network (DRN). Thereafter, task scheduling is accomplished based on DL using the proposed deep feedforward neural network fused long short-term memory (DFNN-LSTM), which is the combination of DFNN and LSTM. Moreover, when scheduling the workflow, the task parameters and the virtual machine's (VM) live parameters are taken into consideration. Task parameters are earliest finish time (EFT), earliest start time (EST), task length, task priority, and actual task running time, whereas VM parameters include memory utilization, bandwidth utilization, capacity, and central processing unit (CPU). The proposed model DFNN-LSTM+FFBO has achieved superior makespan, energy, and resource utilization of 0.188, 0.950J, and 0.238, respectively.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-30\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2391395\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2391395","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep learning and optimization enabled multi-objective for task scheduling in cloud computing.
In cloud computing (CC), task scheduling allocates the task to best suitable resource for execution. This article proposes a model for task scheduling utilizing the multi-objective optimization and deep learning (DL) model. Initially, the multi-objective task scheduling is carried out by the incoming user utilizing the proposed hybrid fractional flamingo beetle optimization (FFBO) which is formed by integrating dung beetle optimization (DBO), flamingo search algorithm (FSA) and fractional calculus (FC). Here, the fitness function depends on reliability, cost, predicted energy, and makespan, the predicted energy is forecasted by a deep residual network (DRN). Thereafter, task scheduling is accomplished based on DL using the proposed deep feedforward neural network fused long short-term memory (DFNN-LSTM), which is the combination of DFNN and LSTM. Moreover, when scheduling the workflow, the task parameters and the virtual machine's (VM) live parameters are taken into consideration. Task parameters are earliest finish time (EFT), earliest start time (EST), task length, task priority, and actual task running time, whereas VM parameters include memory utilization, bandwidth utilization, capacity, and central processing unit (CPU). The proposed model DFNN-LSTM+FFBO has achieved superior makespan, energy, and resource utilization of 0.188, 0.950J, and 0.238, respectively.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.