从根本上了解普鲁士蓝及其类似物,以实现卓越的电容式去离子:从纳米建筑学的角度看问题

IF 20.3 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Coordination Chemistry Reviews Pub Date : 2024-08-20 DOI:10.1016/j.ccr.2024.216100
{"title":"从根本上了解普鲁士蓝及其类似物,以实现卓越的电容式去离子:从纳米建筑学的角度看问题","authors":"","doi":"10.1016/j.ccr.2024.216100","DOIUrl":null,"url":null,"abstract":"<div><p>Capacitive deionization (CDI) offers an appealing electrochemical solution for water treatment, where electrode materials play a crucial role in ensuring the efficiency of CDI devices. The quest for novel electrode materials is driven by the need to enhance desalination capacity, cycling stability, ion selectivity, and energy efficiency, given that traditional carbon materials relying on electric double layer electrosorption principle often exhibit subpar desalination capabilities. Among the standout options, Prussian blue (Fe<sub>4</sub>[Fe(CN)<sub>6</sub>]<sub>3</sub>) and its analogs (PB/PBAs) have stood out in CDI systems due to their superior performance and durability as coordination polymers. Nevertheless, challenges persist in leveraging their full potential for CDI, stemming from issues like low desalination capacity, slow kinetics, poor conductivity, structural vulnerability, and limited electrochemical activity. Recent years have witnessed the emergence of innovative strategies aimed at addressing these obstacles, particularly through advancements in structural and compositional manipulation. This review seeks to consolidate the latest advancements in the nanoarchitectonics of PB/PBAs, exploring their classification, and synthesis methodologies, and delving into the fundamental principles governing their utility in CDI applications—anchored in considerations of thermodynamics, kinetics, and mechanisms. Notably, the review underscores the prevailing challenges faced by PB/PBAs in CDI deployment, prompting the discussion of proactive approaches to guide future material innovation and usage. By shedding light on the ongoing efforts to enhance PB/PBAs for CDI, this review anticipates that advancements in nanoarchitectonics will unlock fresh possibilities in the realm of high-performance CDI material design and implementation.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental understanding of Prussian blue and its analogues for superior capacitive deionization: A perspective from nanoarchitectonics\",\"authors\":\"\",\"doi\":\"10.1016/j.ccr.2024.216100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Capacitive deionization (CDI) offers an appealing electrochemical solution for water treatment, where electrode materials play a crucial role in ensuring the efficiency of CDI devices. The quest for novel electrode materials is driven by the need to enhance desalination capacity, cycling stability, ion selectivity, and energy efficiency, given that traditional carbon materials relying on electric double layer electrosorption principle often exhibit subpar desalination capabilities. Among the standout options, Prussian blue (Fe<sub>4</sub>[Fe(CN)<sub>6</sub>]<sub>3</sub>) and its analogs (PB/PBAs) have stood out in CDI systems due to their superior performance and durability as coordination polymers. Nevertheless, challenges persist in leveraging their full potential for CDI, stemming from issues like low desalination capacity, slow kinetics, poor conductivity, structural vulnerability, and limited electrochemical activity. Recent years have witnessed the emergence of innovative strategies aimed at addressing these obstacles, particularly through advancements in structural and compositional manipulation. This review seeks to consolidate the latest advancements in the nanoarchitectonics of PB/PBAs, exploring their classification, and synthesis methodologies, and delving into the fundamental principles governing their utility in CDI applications—anchored in considerations of thermodynamics, kinetics, and mechanisms. Notably, the review underscores the prevailing challenges faced by PB/PBAs in CDI deployment, prompting the discussion of proactive approaches to guide future material innovation and usage. By shedding light on the ongoing efforts to enhance PB/PBAs for CDI, this review anticipates that advancements in nanoarchitectonics will unlock fresh possibilities in the realm of high-performance CDI material design and implementation.</p></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854524004466\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524004466","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

电容式去离子(CDI)为水处理提供了一种极具吸引力的电化学解决方案,而电极材料在确保 CDI 设备的效率方面发挥着至关重要的作用。由于传统的碳材料依赖于双电层电吸附原理,其脱盐能力往往不尽如人意,因此需要提高脱盐能力、循环稳定性、离子选择性和能效,从而推动了对新型电极材料的探索。普鲁士蓝(Fe4[Fe(CN)6]3)及其类似物(PB/PBAs)作为配位聚合物,性能优越,经久耐用,在 CDI 系统中脱颖而出。然而,由于脱盐能力低、动力学速度慢、导电性差、结构脆弱和电化学活性有限等问题,要充分发挥它们在 CDI 中的潜力仍面临挑战。近年来,旨在解决这些障碍的创新战略不断涌现,特别是通过在结构和成分处理方面的进步。本综述旨在整合 PB/PBA 纳米结构方面的最新进展,探讨其分类和合成方法,并深入研究其在 CDI 应用中的基本原理--以热力学、动力学和机制方面的考虑为基础。值得注意的是,该综述强调了 PB/PBA 在 CDI 应用中面临的普遍挑战,促使人们讨论积极主动的方法,以指导未来的材料创新和使用。本综述揭示了目前为增强 PB/PBAs 在 CDI 中的应用所做的努力,预计纳米体系结构的进步将为高性能 CDI 材料的设计和实施领域带来新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fundamental understanding of Prussian blue and its analogues for superior capacitive deionization: A perspective from nanoarchitectonics

Capacitive deionization (CDI) offers an appealing electrochemical solution for water treatment, where electrode materials play a crucial role in ensuring the efficiency of CDI devices. The quest for novel electrode materials is driven by the need to enhance desalination capacity, cycling stability, ion selectivity, and energy efficiency, given that traditional carbon materials relying on electric double layer electrosorption principle often exhibit subpar desalination capabilities. Among the standout options, Prussian blue (Fe4[Fe(CN)6]3) and its analogs (PB/PBAs) have stood out in CDI systems due to their superior performance and durability as coordination polymers. Nevertheless, challenges persist in leveraging their full potential for CDI, stemming from issues like low desalination capacity, slow kinetics, poor conductivity, structural vulnerability, and limited electrochemical activity. Recent years have witnessed the emergence of innovative strategies aimed at addressing these obstacles, particularly through advancements in structural and compositional manipulation. This review seeks to consolidate the latest advancements in the nanoarchitectonics of PB/PBAs, exploring their classification, and synthesis methodologies, and delving into the fundamental principles governing their utility in CDI applications—anchored in considerations of thermodynamics, kinetics, and mechanisms. Notably, the review underscores the prevailing challenges faced by PB/PBAs in CDI deployment, prompting the discussion of proactive approaches to guide future material innovation and usage. By shedding light on the ongoing efforts to enhance PB/PBAs for CDI, this review anticipates that advancements in nanoarchitectonics will unlock fresh possibilities in the realm of high-performance CDI material design and implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coordination Chemistry Reviews
Coordination Chemistry Reviews 化学-无机化学与核化学
CiteScore
34.30
自引率
5.30%
发文量
457
审稿时长
54 days
期刊介绍: Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers. The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.
期刊最新文献
Polyoxometalates emerging as multifunctional powerhouses in the battle against cancer Insights into excitons manipulation in metal chalcogenides based Nano-heterojunction Photocatalysts: A breakthrough in green hydrogen production Recent advances in metal-free photosensitizers for dye-sensitized photoelectrochemical cells Advances in reticular materials for sustainable rare earth element recovery Nanostructure-reinforced multifunctional hydrogels for synergistic cancer therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1