一步合成锚定在泡沫镍上的 CoO 纳米阵列,作为锂硫电池的三维集流器

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-08-20 DOI:10.1016/j.ssi.2024.116661
Hui Li , Mingjiang Li , Jingzhi Rong , Tongye Wei , Kailing Sun , Yanhuai Ding , Gangtie Lei , Zhaohui Li
{"title":"一步合成锚定在泡沫镍上的 CoO 纳米阵列,作为锂硫电池的三维集流器","authors":"Hui Li ,&nbsp;Mingjiang Li ,&nbsp;Jingzhi Rong ,&nbsp;Tongye Wei ,&nbsp;Kailing Sun ,&nbsp;Yanhuai Ding ,&nbsp;Gangtie Lei ,&nbsp;Zhaohui Li","doi":"10.1016/j.ssi.2024.116661","DOIUrl":null,"url":null,"abstract":"<div><p>Practical application of lithium‑sulfur batteries (LSBs) is severely impeded by the poor conductivity of sulfur/Li<sub>2</sub>S, large-volume change of active materials, shuttle effect and sluggish conversion reaction kinetics of polysulfides. To address these issues, a three-dimensional (3D) substrate, which was prepared by anchoring CoO nanoarrays on the surface of nickel foam (NF@CoO) through one-step hydrothermal treatment, is used as the current collector of the sulfur cathode. The as-prepared S/NF@CoO cathode presents excellent electrochemical performances due to the high electronic conductivity of nickel network, chemical adsorption and catalysis of CoO nanoarrays to LiPSs, and highly porous structure of nickel foam. The cathode with a sulfur loading of 2.72 mg cm<sup>−2</sup> can deliver an initial capacity of 490 mAh g<sup>−1</sup> at 1C, and 306 mAh g<sup>−1</sup> after 500 cycles. When the sulfur loading is increased to 5.12 mg cm<sup>−2</sup>, the resultant cathode can achieve a capacity of 2.3 mAh cm<sup>−2</sup> at 0.5C. The results demonstrate that the 3D NF@CoO collector with synergistic effects of catalysis and chemisorption on LiPSs enable the sulfur cathode thick with meeting the requirements of practical use of LSBs.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116661"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-step synthesis of the CoO nanoarrays anchored on nickel foam as a three-dimensional current collector for lithium‑sulfur batteries\",\"authors\":\"Hui Li ,&nbsp;Mingjiang Li ,&nbsp;Jingzhi Rong ,&nbsp;Tongye Wei ,&nbsp;Kailing Sun ,&nbsp;Yanhuai Ding ,&nbsp;Gangtie Lei ,&nbsp;Zhaohui Li\",\"doi\":\"10.1016/j.ssi.2024.116661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Practical application of lithium‑sulfur batteries (LSBs) is severely impeded by the poor conductivity of sulfur/Li<sub>2</sub>S, large-volume change of active materials, shuttle effect and sluggish conversion reaction kinetics of polysulfides. To address these issues, a three-dimensional (3D) substrate, which was prepared by anchoring CoO nanoarrays on the surface of nickel foam (NF@CoO) through one-step hydrothermal treatment, is used as the current collector of the sulfur cathode. The as-prepared S/NF@CoO cathode presents excellent electrochemical performances due to the high electronic conductivity of nickel network, chemical adsorption and catalysis of CoO nanoarrays to LiPSs, and highly porous structure of nickel foam. The cathode with a sulfur loading of 2.72 mg cm<sup>−2</sup> can deliver an initial capacity of 490 mAh g<sup>−1</sup> at 1C, and 306 mAh g<sup>−1</sup> after 500 cycles. When the sulfur loading is increased to 5.12 mg cm<sup>−2</sup>, the resultant cathode can achieve a capacity of 2.3 mAh cm<sup>−2</sup> at 0.5C. The results demonstrate that the 3D NF@CoO collector with synergistic effects of catalysis and chemisorption on LiPSs enable the sulfur cathode thick with meeting the requirements of practical use of LSBs.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"415 \",\"pages\":\"Article 116661\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824002091\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002091","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硫/Li2S导电性差、活性材料体积变化大、穿梭效应以及多硫化物转化反应动力学缓慢等问题严重阻碍了锂硫电池(LSBs)的实际应用。为了解决这些问题,通过一步水热处理在泡沫镍(NF@CoO)表面锚定 CoO 纳米阵列而制备的三维(3D)基底被用作硫阴极的集流器。由于镍网络的高电子传导性、CoO 纳米阵列对锂离子电池的化学吸附和催化作用以及泡沫镍的高多孔结构,制备的 S/NF@CoO 阴极具有优异的电化学性能。硫负荷为 2.72 mg cm-2 的阴极在 1C 时的初始容量为 490 mAh g-1,循环 500 次后的容量为 306 mAh g-1。当硫含量增加到 5.12 mg cm-2 时,产生的阴极在 0.5C 时的容量可达 2.3 mAh cm-2。这些结果表明,三维 NF@CoO 集流体在催化和化学吸附方面对锂离子电池具有协同效应,因此可以制成符合 LSB 实际使用要求的厚硫阴极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-step synthesis of the CoO nanoarrays anchored on nickel foam as a three-dimensional current collector for lithium‑sulfur batteries

Practical application of lithium‑sulfur batteries (LSBs) is severely impeded by the poor conductivity of sulfur/Li2S, large-volume change of active materials, shuttle effect and sluggish conversion reaction kinetics of polysulfides. To address these issues, a three-dimensional (3D) substrate, which was prepared by anchoring CoO nanoarrays on the surface of nickel foam (NF@CoO) through one-step hydrothermal treatment, is used as the current collector of the sulfur cathode. The as-prepared S/NF@CoO cathode presents excellent electrochemical performances due to the high electronic conductivity of nickel network, chemical adsorption and catalysis of CoO nanoarrays to LiPSs, and highly porous structure of nickel foam. The cathode with a sulfur loading of 2.72 mg cm−2 can deliver an initial capacity of 490 mAh g−1 at 1C, and 306 mAh g−1 after 500 cycles. When the sulfur loading is increased to 5.12 mg cm−2, the resultant cathode can achieve a capacity of 2.3 mAh cm−2 at 0.5C. The results demonstrate that the 3D NF@CoO collector with synergistic effects of catalysis and chemisorption on LiPSs enable the sulfur cathode thick with meeting the requirements of practical use of LSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Editorial Board Enhancing ionic conductivity of LiSiPON thin films electrolytes: Overcoming synthesis challenges related to Li-migration in the precursor target Preface "Special Issue for the 21st International Conference on Solid State Protonic Conductors (SSPC-21)" Enhancing cycling stability in Li-rich layered oxides by atomic layer deposition of LiNbO3 nanolayers Performance improvement tactics of sensitized solar cells based on CuInS2 quantum dots prepared by high temperature hot injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1