Michal Stransky, Thomas J. Lane, Alexander Gorel, Sébastien Boutet, Ilme Schlichting, Adrian P. Mancuso, Zoltan Jurek, Beata Ziaja
{"title":"XFEL 辐射电离产生液态水的独特结构","authors":"Michal Stransky, Thomas J. Lane, Alexander Gorel, Sébastien Boutet, Ilme Schlichting, Adrian P. Mancuso, Zoltan Jurek, Beata Ziaja","doi":"10.1038/s42005-024-01768-6","DOIUrl":null,"url":null,"abstract":"In the warm dense matter (WDM) regime, where condensed, gas, and plasma phases coexist, matter frequently exhibits unusual properties that cannot be described by contemporary theory. Experiments reporting phenomena in WDM are therefore of interest to advance our physical understanding of this regime, which is found in dwarf stars, giant planets, and fusion ignition experiments. Using 7.1 keV X-ray free electron laser radiation (nominally 5×105 J/cm2), we produced and probed transient WDM in liquid water. Wide-angle X-ray scattering (WAXS) from the probe reveals a new ~9 Å structure that forms within 75 fs. By 100 fs, the WAXS peak corresponding to this new structure is of comparable magnitude to the ambient water peak, which is attenuated. Simulations suggest that the experiment probes a superposition of two regimes. In the first, fluences expected at the focus severely ionize the water, which becomes effectively transparent to the probe. In the second, out-of-focus pump radiation produces O1+ and O2+ ions, which rearrange due to Coulombic repulsion over 10 s of fs. Our simulations account for a decrease in ambient water signal and an increase in low-angle X-ray scattering but not the experimentally observed 9 Å feature, presenting a new challenge for theory. The ionization via high-intensity X-ray irradiation can cause structural rearrangements within the sample. The authors observe a new structure in ionized liquid water emerging within few femtoseconds from the initial ionization, characterized via a peculiar partial order on a length scale much longer than normally found in water.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01768-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Ionization by XFEL radiation produces distinct structure in liquid water\",\"authors\":\"Michal Stransky, Thomas J. Lane, Alexander Gorel, Sébastien Boutet, Ilme Schlichting, Adrian P. Mancuso, Zoltan Jurek, Beata Ziaja\",\"doi\":\"10.1038/s42005-024-01768-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the warm dense matter (WDM) regime, where condensed, gas, and plasma phases coexist, matter frequently exhibits unusual properties that cannot be described by contemporary theory. Experiments reporting phenomena in WDM are therefore of interest to advance our physical understanding of this regime, which is found in dwarf stars, giant planets, and fusion ignition experiments. Using 7.1 keV X-ray free electron laser radiation (nominally 5×105 J/cm2), we produced and probed transient WDM in liquid water. Wide-angle X-ray scattering (WAXS) from the probe reveals a new ~9 Å structure that forms within 75 fs. By 100 fs, the WAXS peak corresponding to this new structure is of comparable magnitude to the ambient water peak, which is attenuated. Simulations suggest that the experiment probes a superposition of two regimes. In the first, fluences expected at the focus severely ionize the water, which becomes effectively transparent to the probe. In the second, out-of-focus pump radiation produces O1+ and O2+ ions, which rearrange due to Coulombic repulsion over 10 s of fs. Our simulations account for a decrease in ambient water signal and an increase in low-angle X-ray scattering but not the experimentally observed 9 Å feature, presenting a new challenge for theory. The ionization via high-intensity X-ray irradiation can cause structural rearrangements within the sample. The authors observe a new structure in ionized liquid water emerging within few femtoseconds from the initial ionization, characterized via a peculiar partial order on a length scale much longer than normally found in water.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01768-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01768-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01768-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在凝聚态、气态和等离子态共存的温致密物质(WDM)体系中,物质经常表现出当代理论无法描述的异常特性。因此,报告 WDM 现象的实验对于推进我们对这一机制的物理理解很有意义,矮星、巨行星和核聚变点火实验中都发现了这一机制。利用 7.1 keV X 射线自由电子激光辐射(名义上 5×105 J/cm2),我们在液态水中产生并探测了瞬态 WDM。探针产生的广角 X 射线散射(WAXS)揭示了在 75 fs 内形成的 ~9 Å 新结构。到 100 fs 时,与这种新结构相对应的 WAXS 峰值与环境水峰值的大小相当,而环境水峰值则有所衰减。模拟结果表明,该实验探测了两种状态的叠加。在第一种情况下,焦点处的通量会使水严重电离,从而使水对探针变得透明。在第二种情况下,焦点外的泵辐射产生 O1+ 和 O2+ 离子,由于库仑斥力,这些离子在 10 秒 fs 的时间内重新排列。我们的模拟解释了环境水信号的减少和低角 X 射线散射的增加,但没有解释实验观察到的 9 Å 特征,这对理论提出了新的挑战。通过高强度 X 射线辐照产生的电离可导致样品内部结构重排。作者观察到电离液态水在初始电离后的几飞秒内出现了一种新结构,其特征是在比通常水长得多的长度尺度上出现了一种奇特的偏序。
Ionization by XFEL radiation produces distinct structure in liquid water
In the warm dense matter (WDM) regime, where condensed, gas, and plasma phases coexist, matter frequently exhibits unusual properties that cannot be described by contemporary theory. Experiments reporting phenomena in WDM are therefore of interest to advance our physical understanding of this regime, which is found in dwarf stars, giant planets, and fusion ignition experiments. Using 7.1 keV X-ray free electron laser radiation (nominally 5×105 J/cm2), we produced and probed transient WDM in liquid water. Wide-angle X-ray scattering (WAXS) from the probe reveals a new ~9 Å structure that forms within 75 fs. By 100 fs, the WAXS peak corresponding to this new structure is of comparable magnitude to the ambient water peak, which is attenuated. Simulations suggest that the experiment probes a superposition of two regimes. In the first, fluences expected at the focus severely ionize the water, which becomes effectively transparent to the probe. In the second, out-of-focus pump radiation produces O1+ and O2+ ions, which rearrange due to Coulombic repulsion over 10 s of fs. Our simulations account for a decrease in ambient water signal and an increase in low-angle X-ray scattering but not the experimentally observed 9 Å feature, presenting a new challenge for theory. The ionization via high-intensity X-ray irradiation can cause structural rearrangements within the sample. The authors observe a new structure in ionized liquid water emerging within few femtoseconds from the initial ionization, characterized via a peculiar partial order on a length scale much longer than normally found in water.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.