用于 LIB 的 Li4Ti5O12 薄膜阳极的非平衡快速锂化

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-08-17 DOI:10.1038/s42005-024-01775-7
Yue Chen, Shaohua Zhang, Jiefeng Ye, Xinyi Zheng, Jian-Min Zhang, Nagarathinam Mangayarkarasi, Yubiao Niu, Hongyi Lu, Guiying Zhao, Jianming Tao, Jiaxin Li, Yingbin Lin, Oleg V. Kolosov, Zhigao Huang
{"title":"用于 LIB 的 Li4Ti5O12 薄膜阳极的非平衡快速锂化","authors":"Yue Chen, Shaohua Zhang, Jiefeng Ye, Xinyi Zheng, Jian-Min Zhang, Nagarathinam Mangayarkarasi, Yubiao Niu, Hongyi Lu, Guiying Zhao, Jianming Tao, Jiaxin Li, Yingbin Lin, Oleg V. Kolosov, Zhigao Huang","doi":"10.1038/s42005-024-01775-7","DOIUrl":null,"url":null,"abstract":"Li4Ti5O12 (LTO) is known for its zero-strain characteristic in electrochemical applications, making it a suitable material for fast-charging applications. Here, we systematically studied the quasi-equilibrium and non-equilibrium lithium-ion transportation kinetics in LTO thin-film electrodes, across a range of scales from the crystal lattice to the microstructured electrodes. At the crystal lattice scale, during the non-equilibrium lithiation process, lithium ions are dispersedly embedded into the 16c position, resulting in more 8a → 16c migration compared with the quasi-equilibrium lithiation, and forming numerous fast lithium diffusion channels inside the LTO lattice. At the microstructural electrode scale, optical spectrum characterizations supported the “nano-filaments” lithiation model in polycrystalline LTO thin-film electrodes during the lithiation process. Our results reveal the patterns of lithium migration and distribution within the LTO thin film electrode under the non-equilibrium and quasi-equilibrium lithiation process, offering profound insights into the potential optimization strategies for enhancing the performance of fast-charging thin film batteries. Li4Ti5O12 (LTO) is an ideal battery material for fastcharging applications. The authors examine Li+ transport in LTO thin film electrodes, revealing that nonequilibrium processes result in unique Li+ occupation states that enhance Li+ diffusion. Findings suggests engineering Li+ occupations in LTO crystal lattice can improve battery performance.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01775-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonequilibrium fast-lithiation of Li4Ti5O12 thin film anode for LIBs\",\"authors\":\"Yue Chen, Shaohua Zhang, Jiefeng Ye, Xinyi Zheng, Jian-Min Zhang, Nagarathinam Mangayarkarasi, Yubiao Niu, Hongyi Lu, Guiying Zhao, Jianming Tao, Jiaxin Li, Yingbin Lin, Oleg V. Kolosov, Zhigao Huang\",\"doi\":\"10.1038/s42005-024-01775-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Li4Ti5O12 (LTO) is known for its zero-strain characteristic in electrochemical applications, making it a suitable material for fast-charging applications. Here, we systematically studied the quasi-equilibrium and non-equilibrium lithium-ion transportation kinetics in LTO thin-film electrodes, across a range of scales from the crystal lattice to the microstructured electrodes. At the crystal lattice scale, during the non-equilibrium lithiation process, lithium ions are dispersedly embedded into the 16c position, resulting in more 8a → 16c migration compared with the quasi-equilibrium lithiation, and forming numerous fast lithium diffusion channels inside the LTO lattice. At the microstructural electrode scale, optical spectrum characterizations supported the “nano-filaments” lithiation model in polycrystalline LTO thin-film electrodes during the lithiation process. Our results reveal the patterns of lithium migration and distribution within the LTO thin film electrode under the non-equilibrium and quasi-equilibrium lithiation process, offering profound insights into the potential optimization strategies for enhancing the performance of fast-charging thin film batteries. Li4Ti5O12 (LTO) is an ideal battery material for fastcharging applications. The authors examine Li+ transport in LTO thin film electrodes, revealing that nonequilibrium processes result in unique Li+ occupation states that enhance Li+ diffusion. Findings suggests engineering Li+ occupations in LTO crystal lattice can improve battery performance.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01775-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01775-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01775-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Li4Ti5O12(LTO)因其在电化学应用中的零应变特性而闻名,是一种适合快速充电应用的材料。在此,我们系统地研究了 LTO 薄膜电极中从晶格到微结构电极的准平衡和非平衡锂离子传输动力学。在晶格尺度上,在非平衡锂化过程中,锂离子分散嵌入 16c 位置,导致与准平衡锂化相比更多的 8a → 16c 迁移,并在 LTO 晶格内部形成大量快速锂扩散通道。在微结构电极尺度上,光学光谱表征支持多晶 LTO 薄膜电极在锂化过程中的 "纳米纤丝 "锂化模型。我们的研究结果揭示了非平衡态和准平衡态锂化过程中锂在 LTO 薄膜电极中的迁移和分布模式,为提高快速充电薄膜电池性能的潜在优化策略提供了深刻的见解。Li4Ti5O12(LTO)是一种理想的快速充电应用电池材料。作者对 LTO 薄膜电极中的 Li+ 传输进行了研究,发现非平衡过程会导致独特的 Li+ 占位状态,从而增强 Li+ 扩散。研究结果表明,LTO 晶格中的 Li+ 占位工程可以提高电池性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonequilibrium fast-lithiation of Li4Ti5O12 thin film anode for LIBs
Li4Ti5O12 (LTO) is known for its zero-strain characteristic in electrochemical applications, making it a suitable material for fast-charging applications. Here, we systematically studied the quasi-equilibrium and non-equilibrium lithium-ion transportation kinetics in LTO thin-film electrodes, across a range of scales from the crystal lattice to the microstructured electrodes. At the crystal lattice scale, during the non-equilibrium lithiation process, lithium ions are dispersedly embedded into the 16c position, resulting in more 8a → 16c migration compared with the quasi-equilibrium lithiation, and forming numerous fast lithium diffusion channels inside the LTO lattice. At the microstructural electrode scale, optical spectrum characterizations supported the “nano-filaments” lithiation model in polycrystalline LTO thin-film electrodes during the lithiation process. Our results reveal the patterns of lithium migration and distribution within the LTO thin film electrode under the non-equilibrium and quasi-equilibrium lithiation process, offering profound insights into the potential optimization strategies for enhancing the performance of fast-charging thin film batteries. Li4Ti5O12 (LTO) is an ideal battery material for fastcharging applications. The authors examine Li+ transport in LTO thin film electrodes, revealing that nonequilibrium processes result in unique Li+ occupation states that enhance Li+ diffusion. Findings suggests engineering Li+ occupations in LTO crystal lattice can improve battery performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Topological transition in filamentous cyanobacteria: from motion to structure Benchmarking the optimization of optical machines with the planted solutions Spontaneous flows and quantum analogies in heterogeneous active nematic films Quantum switch instabilities with an open control Time persistence of climate and carbon flux networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1