利用双光子分解和超快光学捕获技术实现金属和合金的自由空间直接纳米级三维打印

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nature Materials Pub Date : 2024-08-21 DOI:10.1038/s41563-024-01984-z
Yaoyu Wang, Chenqi Yi, Wenxiang Tian, Feng Liu, Gary J. Cheng
{"title":"利用双光子分解和超快光学捕获技术实现金属和合金的自由空间直接纳米级三维打印","authors":"Yaoyu Wang, Chenqi Yi, Wenxiang Tian, Feng Liu, Gary J. Cheng","doi":"10.1038/s41563-024-01984-z","DOIUrl":null,"url":null,"abstract":"Nanoscale three-dimensional (3D) printing of metals and alloys has faced challenges in speed, miniaturization and deficiency in material properties. Traditional nanomanufacturing relies on lithographic methods with material constraints, limited resolution and slow layer-by-layer processing. This work introduces polymer-free techniques using two-photon decomposition and optical force trapping for free-space direct 3D printing of metals, metal oxides and multimetallic alloys with resolutions beyond optical limits. This method involves the two-photon decomposition of metal atoms from precursors, rapid assembly into nanoclusters via optical forces and ultrafast laser sintering, yielding dense, smooth nanostructures. Enhanced near-field optical forces from laser-induced localized surface plasmon resonance facilitate nanocluster aggregation. Our approach eliminates the need for organic materials, layer-by-layer printing and complex post-processing. Printed Mo nanowires show an excellent mechanical performance, closely resembling the behaviour of single crystals, while Mo–Co–W alloy nanowires outperform Mo nanowires. This innovation promises the customizable 3D nanoprinting of high-quality metals and metal oxides, impacting nanoelectronics, nanorobotics and advanced chip manufacturing. A polymer-free 3D printing technique of metals and alloys, using two-photon decomposition and optical force trapping, is presented. It achieves dense and smooth nanostructures with a resolution beyond optical limits.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 12","pages":"1645-1653"},"PeriodicalIF":37.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free-space direct nanoscale 3D printing of metals and alloys enabled by two-photon decomposition and ultrafast optical trapping\",\"authors\":\"Yaoyu Wang, Chenqi Yi, Wenxiang Tian, Feng Liu, Gary J. Cheng\",\"doi\":\"10.1038/s41563-024-01984-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoscale three-dimensional (3D) printing of metals and alloys has faced challenges in speed, miniaturization and deficiency in material properties. Traditional nanomanufacturing relies on lithographic methods with material constraints, limited resolution and slow layer-by-layer processing. This work introduces polymer-free techniques using two-photon decomposition and optical force trapping for free-space direct 3D printing of metals, metal oxides and multimetallic alloys with resolutions beyond optical limits. This method involves the two-photon decomposition of metal atoms from precursors, rapid assembly into nanoclusters via optical forces and ultrafast laser sintering, yielding dense, smooth nanostructures. Enhanced near-field optical forces from laser-induced localized surface plasmon resonance facilitate nanocluster aggregation. Our approach eliminates the need for organic materials, layer-by-layer printing and complex post-processing. Printed Mo nanowires show an excellent mechanical performance, closely resembling the behaviour of single crystals, while Mo–Co–W alloy nanowires outperform Mo nanowires. This innovation promises the customizable 3D nanoprinting of high-quality metals and metal oxides, impacting nanoelectronics, nanorobotics and advanced chip manufacturing. A polymer-free 3D printing technique of metals and alloys, using two-photon decomposition and optical force trapping, is presented. It achieves dense and smooth nanostructures with a resolution beyond optical limits.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"23 12\",\"pages\":\"1645-1653\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41563-024-01984-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01984-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属和合金的纳米级三维(3D)打印在速度、微型化和材料性能缺陷方面面临挑战。传统的纳米制造依赖于光刻方法,这种方法存在材料限制、分辨率有限和逐层加工速度慢等问题。这项工作介绍了使用双光子分解和光学力捕捉的无聚合物技术,用于金属、金属氧化物和多金属合金的自由空间直接三维打印,分辨率超过光学极限。该方法包括双光子分解前驱体中的金属原子、通过光学力快速组装成纳米团簇以及超快激光烧结,从而产生致密、光滑的纳米结构。激光诱导的局部表面等离子体共振增强了近场光学力,促进了纳米团簇的聚集。我们的方法无需使用有机材料、逐层打印和复杂的后处理。打印出的钼纳米线显示出卓越的机械性能,与单晶体的性能十分相似,而钼-钴-钨合金纳米线的性能则优于钼纳米线。这项创新有望实现高质量金属和金属氧化物的可定制三维纳米打印,对纳米电子学、纳米机器人学和先进芯片制造产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Free-space direct nanoscale 3D printing of metals and alloys enabled by two-photon decomposition and ultrafast optical trapping
Nanoscale three-dimensional (3D) printing of metals and alloys has faced challenges in speed, miniaturization and deficiency in material properties. Traditional nanomanufacturing relies on lithographic methods with material constraints, limited resolution and slow layer-by-layer processing. This work introduces polymer-free techniques using two-photon decomposition and optical force trapping for free-space direct 3D printing of metals, metal oxides and multimetallic alloys with resolutions beyond optical limits. This method involves the two-photon decomposition of metal atoms from precursors, rapid assembly into nanoclusters via optical forces and ultrafast laser sintering, yielding dense, smooth nanostructures. Enhanced near-field optical forces from laser-induced localized surface plasmon resonance facilitate nanocluster aggregation. Our approach eliminates the need for organic materials, layer-by-layer printing and complex post-processing. Printed Mo nanowires show an excellent mechanical performance, closely resembling the behaviour of single crystals, while Mo–Co–W alloy nanowires outperform Mo nanowires. This innovation promises the customizable 3D nanoprinting of high-quality metals and metal oxides, impacting nanoelectronics, nanorobotics and advanced chip manufacturing. A polymer-free 3D printing technique of metals and alloys, using two-photon decomposition and optical force trapping, is presented. It achieves dense and smooth nanostructures with a resolution beyond optical limits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
期刊最新文献
Fostering breakthroughs to decarbonize aviation Inhalable nanocatalytic therapeutics for viral pneumonia Probing anode microstructure Architectured soft materials as autonomous microrobots Strain by metal nitrides accelerates oxygen reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1