OsSRO1c-OsDREB2B 复合物经历蛋白质相变以增强水稻的耐寒性。

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant Pub Date : 2024-10-07 Epub Date: 2024-08-22 DOI:10.1016/j.molp.2024.08.006
Dan Hu, Yilong Yao, Yan Lv, Jun You, Yu Zhang, Qingya Lv, Jiawei Li, Stephanie Hutin, Haiyan Xiong, Chloe Zubieta, Xuelei Lai, Lizhong Xiong
{"title":"OsSRO1c-OsDREB2B 复合物经历蛋白质相变以增强水稻的耐寒性。","authors":"Dan Hu, Yilong Yao, Yan Lv, Jun You, Yu Zhang, Qingya Lv, Jiawei Li, Stephanie Hutin, Haiyan Xiong, Chloe Zubieta, Xuelei Lai, Lizhong Xiong","doi":"10.1016/j.molp.2024.08.006","DOIUrl":null,"url":null,"abstract":"<p><p>Cold stress is one of the major abiotic stress factors affecting rice growth and development, leading to significant yield loss in the context of global climate change. Exploring natural variants that confer cold resistance and the underlying molecular mechanism responsible for this is the major strategy to breed cold-tolerant rice varieties. Here, we show that natural variations of a SIMILAR to RCD ONE (SRO) gene, OsSRO1c, confer cold tolerance in rice at both seedling and booting stages. Our in vivo and in vitro experiments demonstrated that OsSRO1c possesses intrinsic liquid-liquid phase-separation ability and recruits OsDREB2B, an AP2/ERF transcription factor that functions as a positive regulator of cold stress, into its biomolecular condensates in the nucleus, resulting in elevated transcriptional activity of OsDREB2B. We found that the OsSRO1c-OsDREB2B complex directly responds to low temperature through dynamic phase transitions and regulates key cold-response genes, including COLD1. Furthermore, we showed that introgression of an elite haplotype of OsSRO1c into a cold-susceptible indica rice could significantly increase its cold resistance. Collectively, our work reveals a novel cold-tolerance regulatory module in rice and provides promising genetic targets for molecular breeding of cold-tolerant rice varieties.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1520-1538"},"PeriodicalIF":17.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The OsSRO1c-OsDREB2B complex undergoes protein phase transition to enhance cold tolerance in rice.\",\"authors\":\"Dan Hu, Yilong Yao, Yan Lv, Jun You, Yu Zhang, Qingya Lv, Jiawei Li, Stephanie Hutin, Haiyan Xiong, Chloe Zubieta, Xuelei Lai, Lizhong Xiong\",\"doi\":\"10.1016/j.molp.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cold stress is one of the major abiotic stress factors affecting rice growth and development, leading to significant yield loss in the context of global climate change. Exploring natural variants that confer cold resistance and the underlying molecular mechanism responsible for this is the major strategy to breed cold-tolerant rice varieties. Here, we show that natural variations of a SIMILAR to RCD ONE (SRO) gene, OsSRO1c, confer cold tolerance in rice at both seedling and booting stages. Our in vivo and in vitro experiments demonstrated that OsSRO1c possesses intrinsic liquid-liquid phase-separation ability and recruits OsDREB2B, an AP2/ERF transcription factor that functions as a positive regulator of cold stress, into its biomolecular condensates in the nucleus, resulting in elevated transcriptional activity of OsDREB2B. We found that the OsSRO1c-OsDREB2B complex directly responds to low temperature through dynamic phase transitions and regulates key cold-response genes, including COLD1. Furthermore, we showed that introgression of an elite haplotype of OsSRO1c into a cold-susceptible indica rice could significantly increase its cold resistance. Collectively, our work reveals a novel cold-tolerance regulatory module in rice and provides promising genetic targets for molecular breeding of cold-tolerant rice varieties.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"1520-1538\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2024.08.006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.08.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

冷胁迫是影响水稻生长发育的主要非生物胁迫因素之一,在全球气候变化的背景下会导致严重的产量损失。探索赋予抗寒性的天然变异及其潜在的分子机制是培育抗寒水稻品种的主要策略。在这里,我们发现一个与 RCD ONE 相似(SRO)基因 OsSRO1c 的天然变异在水稻幼苗和出苗阶段都具有抗寒性。OsSRO1c 在体内和体外都具有内在的液-液相分离能力,并能将 AP2/ERF 转录因子和冷胁迫正调控因子 OsDREB2B 募集到细胞核内的生物分子凝聚体中,从而提高 OsDREB2B 的转录活性。OsSRO1c-OsDREB2B 复合物通过动态相变直接响应低温,并调控包括 COLD1 在内的关键冷响应基因。此外,将 OsSRO1c 的精英单倍型导入到易感冷的籼稻中可显著提高其抗寒性。总之,我们的研究揭示了水稻中一个新的耐寒调控模块,为耐寒水稻品种的分子育种提供了有前景的遗传目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The OsSRO1c-OsDREB2B complex undergoes protein phase transition to enhance cold tolerance in rice.

Cold stress is one of the major abiotic stress factors affecting rice growth and development, leading to significant yield loss in the context of global climate change. Exploring natural variants that confer cold resistance and the underlying molecular mechanism responsible for this is the major strategy to breed cold-tolerant rice varieties. Here, we show that natural variations of a SIMILAR to RCD ONE (SRO) gene, OsSRO1c, confer cold tolerance in rice at both seedling and booting stages. Our in vivo and in vitro experiments demonstrated that OsSRO1c possesses intrinsic liquid-liquid phase-separation ability and recruits OsDREB2B, an AP2/ERF transcription factor that functions as a positive regulator of cold stress, into its biomolecular condensates in the nucleus, resulting in elevated transcriptional activity of OsDREB2B. We found that the OsSRO1c-OsDREB2B complex directly responds to low temperature through dynamic phase transitions and regulates key cold-response genes, including COLD1. Furthermore, we showed that introgression of an elite haplotype of OsSRO1c into a cold-susceptible indica rice could significantly increase its cold resistance. Collectively, our work reveals a novel cold-tolerance regulatory module in rice and provides promising genetic targets for molecular breeding of cold-tolerant rice varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
期刊最新文献
Cotton2035: From Genomics Research to Optimized Breeding. New molecular chaperone roles for CO2 assimilation in early land plants. NTRC mediates the coupling of chloroplast redox rhythm with nuclear circadian clock in plant cells. A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay. Maize2035: A decadal vision for intelligent maize breeding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1