Asena Akköse Baytar, Ertuğrul Gazi Yanar, Anne Frary, Sami Doğanlar
{"title":"欧洲榛子(Corylus avellana L.)产量性状的关联图谱和候选基因鉴定。","authors":"Asena Akköse Baytar, Ertuğrul Gazi Yanar, Anne Frary, Sami Doğanlar","doi":"10.1002/pld3.625","DOIUrl":null,"url":null,"abstract":"<p><p>European hazelnut (<i>Corylus avellana</i> L.) is an important nut crop due to its nutritional benefits, culinary uses, and economic value. Türkiye is the leading producer of hazelnut, followed by Italy and the United States. Quantitative trait locus studies offer promising opportunities for breeders and geneticists to identify genomic regions controlling desirable traits in hazelnut. A genome-wide association analysis was conducted with 5,567 single nucleotide polymorphisms on a Turkish core set of 86 hazelnut accessions, revealing 189 quantitative trait nucleotides (QTNs) associated with 22 of 31 traits (<i>p</i> < 2.9E-07). These QTNs were associated with plant and leaf, phenological, reproductive, nut, and kernel traits. Based on the close physical distance of QTNs associated with the same trait, we identified 23 quantitative trait loci. Furthermore, we identified 23 loci of multiple QTs comprising chromosome locations associated with more than one trait at the same position or in close proximity. A total of 159 candidate genes were identified for 189 QTNs, with 122 of them containing significant conserved protein domains. Some candidate matches to known proteins/domains were highly significant, suggesting that they have similar functions as their matches. This comprehensive study provides valuable insights for the development of breeding strategies and the improvement of hazelnut and enhances the understanding of the genetic architecture of complex traits by proposing candidate genes and potential functions.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"8 8","pages":"e625"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336203/pdf/","citationCount":"0","resultStr":"{\"title\":\"Association mapping and candidate gene identification for yield traits in European hazelnut (<i>Corylus avellana</i> L.).\",\"authors\":\"Asena Akköse Baytar, Ertuğrul Gazi Yanar, Anne Frary, Sami Doğanlar\",\"doi\":\"10.1002/pld3.625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>European hazelnut (<i>Corylus avellana</i> L.) is an important nut crop due to its nutritional benefits, culinary uses, and economic value. Türkiye is the leading producer of hazelnut, followed by Italy and the United States. Quantitative trait locus studies offer promising opportunities for breeders and geneticists to identify genomic regions controlling desirable traits in hazelnut. A genome-wide association analysis was conducted with 5,567 single nucleotide polymorphisms on a Turkish core set of 86 hazelnut accessions, revealing 189 quantitative trait nucleotides (QTNs) associated with 22 of 31 traits (<i>p</i> < 2.9E-07). These QTNs were associated with plant and leaf, phenological, reproductive, nut, and kernel traits. Based on the close physical distance of QTNs associated with the same trait, we identified 23 quantitative trait loci. Furthermore, we identified 23 loci of multiple QTs comprising chromosome locations associated with more than one trait at the same position or in close proximity. A total of 159 candidate genes were identified for 189 QTNs, with 122 of them containing significant conserved protein domains. Some candidate matches to known proteins/domains were highly significant, suggesting that they have similar functions as their matches. This comprehensive study provides valuable insights for the development of breeding strategies and the improvement of hazelnut and enhances the understanding of the genetic architecture of complex traits by proposing candidate genes and potential functions.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"8 8\",\"pages\":\"e625\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.625\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.625","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Association mapping and candidate gene identification for yield traits in European hazelnut (Corylus avellana L.).
European hazelnut (Corylus avellana L.) is an important nut crop due to its nutritional benefits, culinary uses, and economic value. Türkiye is the leading producer of hazelnut, followed by Italy and the United States. Quantitative trait locus studies offer promising opportunities for breeders and geneticists to identify genomic regions controlling desirable traits in hazelnut. A genome-wide association analysis was conducted with 5,567 single nucleotide polymorphisms on a Turkish core set of 86 hazelnut accessions, revealing 189 quantitative trait nucleotides (QTNs) associated with 22 of 31 traits (p < 2.9E-07). These QTNs were associated with plant and leaf, phenological, reproductive, nut, and kernel traits. Based on the close physical distance of QTNs associated with the same trait, we identified 23 quantitative trait loci. Furthermore, we identified 23 loci of multiple QTs comprising chromosome locations associated with more than one trait at the same position or in close proximity. A total of 159 candidate genes were identified for 189 QTNs, with 122 of them containing significant conserved protein domains. Some candidate matches to known proteins/domains were highly significant, suggesting that they have similar functions as their matches. This comprehensive study provides valuable insights for the development of breeding strategies and the improvement of hazelnut and enhances the understanding of the genetic architecture of complex traits by proposing candidate genes and potential functions.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.