生命科学机理模型参数推断和不确定性量化的结构化方法。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Royal Society Open Science Pub Date : 2024-08-21 eCollection Date: 2024-08-01 DOI:10.1098/rsos.240733
Michael J Plank, Matthew J Simpson
{"title":"生命科学机理模型参数推断和不确定性量化的结构化方法。","authors":"Michael J Plank, Matthew J Simpson","doi":"10.1098/rsos.240733","DOIUrl":null,"url":null,"abstract":"<p><p>Parameter inference and uncertainty quantification are important steps when relating mathematical models to real-world observations and when estimating uncertainty in model predictions. However, methods for doing this can be computationally expensive, particularly when the number of unknown model parameters is large. The aim of this study is to develop and test an efficient profile likelihood-based method, which takes advantage of the structure of the mathematical model being used. We do this by identifying specific parameters that affect model output in a known way, such as a linear scaling. We illustrate the method by applying it to three toy models from different areas of the life sciences: (i) a predator-prey model from ecology; (ii) a compartment-based epidemic model from health sciences; and (iii) an advection-diffusion reaction model describing the transport of dissolved solutes from environmental science. We show that the new method produces results of comparable accuracy to existing profile likelihood methods but with substantially fewer evaluations of the forward model. We conclude that our method could provide a much more efficient approach to parameter inference for models where a structured approach is feasible. Computer code to apply the new method to user-supplied models and data is provided via a publicly accessible repository.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336684/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structured methods for parameter inference and uncertainty quantification for mechanistic models in the life sciences.\",\"authors\":\"Michael J Plank, Matthew J Simpson\",\"doi\":\"10.1098/rsos.240733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parameter inference and uncertainty quantification are important steps when relating mathematical models to real-world observations and when estimating uncertainty in model predictions. However, methods for doing this can be computationally expensive, particularly when the number of unknown model parameters is large. The aim of this study is to develop and test an efficient profile likelihood-based method, which takes advantage of the structure of the mathematical model being used. We do this by identifying specific parameters that affect model output in a known way, such as a linear scaling. We illustrate the method by applying it to three toy models from different areas of the life sciences: (i) a predator-prey model from ecology; (ii) a compartment-based epidemic model from health sciences; and (iii) an advection-diffusion reaction model describing the transport of dissolved solutes from environmental science. We show that the new method produces results of comparable accuracy to existing profile likelihood methods but with substantially fewer evaluations of the forward model. We conclude that our method could provide a much more efficient approach to parameter inference for models where a structured approach is feasible. Computer code to apply the new method to user-supplied models and data is provided via a publicly accessible repository.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336684/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240733\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240733","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

参数推断和不确定性量化是将数学模型与现实世界观测结果联系起来以及估计模型预测不确定性的重要步骤。然而,进行参数推断的方法计算成本很高,尤其是当未知模型参数数量较多时。本研究的目的是开发和测试一种基于轮廓似然法的高效方法,该方法利用了所使用数学模型的结构。为此,我们确定了以已知方式影响模型输出的特定参数,如线性缩放。我们将该方法应用于生命科学不同领域的三个玩具模型,以作说明:(i) 生态学中的捕食者-猎物模型;(ii) 健康科学中的分区流行病模型;(iii) 环境科学中描述溶解溶质迁移的平流-扩散反应模型。我们的研究表明,新方法得出的结果与现有的轮廓似然法精度相当,但对前向模型的评估次数大大减少。我们的结论是,我们的方法可以为结构化方法可行的模型提供更有效的参数推断方法。将新方法应用于用户提供的模型和数据的计算机代码通过一个可公开访问的资源库提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structured methods for parameter inference and uncertainty quantification for mechanistic models in the life sciences.

Parameter inference and uncertainty quantification are important steps when relating mathematical models to real-world observations and when estimating uncertainty in model predictions. However, methods for doing this can be computationally expensive, particularly when the number of unknown model parameters is large. The aim of this study is to develop and test an efficient profile likelihood-based method, which takes advantage of the structure of the mathematical model being used. We do this by identifying specific parameters that affect model output in a known way, such as a linear scaling. We illustrate the method by applying it to three toy models from different areas of the life sciences: (i) a predator-prey model from ecology; (ii) a compartment-based epidemic model from health sciences; and (iii) an advection-diffusion reaction model describing the transport of dissolved solutes from environmental science. We show that the new method produces results of comparable accuracy to existing profile likelihood methods but with substantially fewer evaluations of the forward model. We conclude that our method could provide a much more efficient approach to parameter inference for models where a structured approach is feasible. Computer code to apply the new method to user-supplied models and data is provided via a publicly accessible repository.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
期刊最新文献
Comparative study of the catalytic performance of physically mixed and sequentially utilized γ-alumina and zeolite in methanol-to-propylene reactions. Protein folding, protein dynamics and the topology of self-motions. Biological pest regulation can benefit from diverse predation modes. Spatial and seasonal foraging patterns drive diet differences among north Pacific resident killer whale populations. A new sponge from the Marjum Formation of Utah documents the Cambrian origin of the hexactinellid body plan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1