为科学加速人工智能:为科学开放数据科学。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Royal Society Open Science Pub Date : 2024-08-21 eCollection Date: 2024-08-01 DOI:10.1098/rsos.231130
Neil D Lawrence, Jessica Montgomery
{"title":"为科学加速人工智能:为科学开放数据科学。","authors":"Neil D Lawrence, Jessica Montgomery","doi":"10.1098/rsos.231130","DOIUrl":null,"url":null,"abstract":"<p><p>Aspirations for artificial intelligence (AI) as a catalyst for scientific discovery are growing. High-profile successes deploying AI in domains such as protein folding have highlighted AI's potential to unlock new frontiers of scientific knowledge. However, the pathway from AI innovation to deployment in research is not linear. Those seeking to drive a new wave of scientific progress through the application of AI require a diffusion engine that can enhance AI adoption across disciplines. Lessons from previous waves of technology change, experiences of deploying AI in real-world contexts and an emerging research agenda from the AI for science community suggest a framework for accelerating AI adoption. This framework requires action to build supply chains of ideas between disciplines; rapidly transfer technological capabilities through open research; create AI tools that empower researchers; and embed effective data stewardship. Together, these interventions can cultivate an environment of open data science that deliver the benefits of AI across the sciences.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336680/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accelerating AI for science: open data science for science.\",\"authors\":\"Neil D Lawrence, Jessica Montgomery\",\"doi\":\"10.1098/rsos.231130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aspirations for artificial intelligence (AI) as a catalyst for scientific discovery are growing. High-profile successes deploying AI in domains such as protein folding have highlighted AI's potential to unlock new frontiers of scientific knowledge. However, the pathway from AI innovation to deployment in research is not linear. Those seeking to drive a new wave of scientific progress through the application of AI require a diffusion engine that can enhance AI adoption across disciplines. Lessons from previous waves of technology change, experiences of deploying AI in real-world contexts and an emerging research agenda from the AI for science community suggest a framework for accelerating AI adoption. This framework requires action to build supply chains of ideas between disciplines; rapidly transfer technological capabilities through open research; create AI tools that empower researchers; and embed effective data stewardship. Together, these interventions can cultivate an environment of open data science that deliver the benefits of AI across the sciences.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336680/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.231130\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.231130","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人们对人工智能(AI)作为科学发现催化剂的渴望与日俱增。在蛋白质折叠等领域部署人工智能所取得的令人瞩目的成功,凸显了人工智能开启科学知识新领域的潜力。然而,从人工智能创新到应用于研究的过程并不是线性的。那些希望通过应用人工智能推动新一轮科学进步的人,需要一个能够促进人工智能在各学科中应用的传播引擎。从以往的技术变革浪潮中汲取的经验教训、在现实世界中部署人工智能的经验以及人工智能促进科学界的新兴研究议程,都为加速人工智能的应用提出了一个框架。这一框架要求采取行动,在学科之间建立思想供应链;通过开放研究快速转移技术能力;创建增强研究人员能力的人工智能工具;以及嵌入有效的数据管理。这些干预措施结合在一起,就能营造一个开放数据科学的环境,让人工智能为各门科学带来益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating AI for science: open data science for science.

Aspirations for artificial intelligence (AI) as a catalyst for scientific discovery are growing. High-profile successes deploying AI in domains such as protein folding have highlighted AI's potential to unlock new frontiers of scientific knowledge. However, the pathway from AI innovation to deployment in research is not linear. Those seeking to drive a new wave of scientific progress through the application of AI require a diffusion engine that can enhance AI adoption across disciplines. Lessons from previous waves of technology change, experiences of deploying AI in real-world contexts and an emerging research agenda from the AI for science community suggest a framework for accelerating AI adoption. This framework requires action to build supply chains of ideas between disciplines; rapidly transfer technological capabilities through open research; create AI tools that empower researchers; and embed effective data stewardship. Together, these interventions can cultivate an environment of open data science that deliver the benefits of AI across the sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
期刊最新文献
Heliconius butterflies use wide-field landscape features, but not individual local landmarks, during spatial learning. Appreciation of singing and speaking voices is highly idiosyncratic. A first vocal repertoire characterization of long-finned pilot whales (Globicephala melas) in the Mediterranean Sea: a machine learning approach. Beyond bigrams: call sequencing in the common marmoset (Callithrix jacchus) vocal system. Enhancing biodiversity: historical ecology and biogeography of the Santa Catalina Island ground squirrel, Otospermophilus beecheyi nesioticus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1