Yuanyuan Qian , Dan Wang , Zhiyan Li , Houtong Liu , Haijin Zhou , Ke Dou , Liang Xi , Fuying Tang , Fuqi Si , Yuhan Luo
{"title":"对流层甲醛和二氧化氮的地基 MAX-DOAS 观测:洞察臭氧形成的敏感性","authors":"Yuanyuan Qian , Dan Wang , Zhiyan Li , Houtong Liu , Haijin Zhou , Ke Dou , Liang Xi , Fuying Tang , Fuqi Si , Yuhan Luo","doi":"10.1016/j.apr.2024.102285","DOIUrl":null,"url":null,"abstract":"<div><p>Tropospheric profiles of HCHO, NO<sub>2</sub>, and O<sub>3</sub> are important for analyzing ozone formation mechanism. In this study, ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS), light detection and ranging (LIDAR), and in-situ measurements were simultaneously performed to diagnose ozone formation sensitivity at the Heshan Observatory in the Pearl River Delta (PRD) region from September to end October 2019. The profiles of tropospheric HCHO and NO<sub>2</sub> were retrieved from MAX-DOAS measurements using an optimal estimation method. The retrieved surface HCHO and NO<sub>2</sub> results were validated with 2,4-dinitrophenylhydrazine (DNPH) and Thermo 42i measurements, and the correlation coefficients (R) were 0.78 and 0.81, respectively. The retrieved tropospheric vertical column densities (VCDs) of HCHO and NO<sub>2</sub> were compared with TROPOMI measurements, and the correlation coefficients (R) were 0.68 and 0.87, respectively. In addition, MAX-DOAS and LIDAR measurements were combined to diagnose a typical planetary boundary layer (PBL) ozone pollution episode from September 28 to October 10, 2019; this episode was analyzed using HCHO/NO<sub>2</sub> ratio as an indicator and was found to be dominated by the VOC-sensitive regime. Moreover, the regime transition of ozone formation sensitivity was calculated using the surface HCHO/NO<sub>2</sub> ratio and increased O<sub>3</sub> from the MAX-DOAS and Thermo 49i measurements, with transition thresholds of 1.43 and 1.78, respectively. Based on this definition, the ozone formation sensitivity at Heshan Observatory varied from VOC-sensitive (<span><math><mrow><mo><</mo></mrow></math></span> 0.2 km and <span><math><mrow><mo>></mo></mrow></math></span> 0.8 km) to NO<sub>x</sub>-sensitive (0.3–0.7 km) to VOC-NO<sub>x</sub>-sensitive (0.2–0.3 km and 0.7–0.8 km). The results improve our understanding of ozone formation sensitivity in the PRD region.</p></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"15 12","pages":"Article 102285"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground-based MAX-DOAS observations of tropospheric formaldehyde and nitrogen dioxide: Insights into ozone formation sensitivity\",\"authors\":\"Yuanyuan Qian , Dan Wang , Zhiyan Li , Houtong Liu , Haijin Zhou , Ke Dou , Liang Xi , Fuying Tang , Fuqi Si , Yuhan Luo\",\"doi\":\"10.1016/j.apr.2024.102285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tropospheric profiles of HCHO, NO<sub>2</sub>, and O<sub>3</sub> are important for analyzing ozone formation mechanism. In this study, ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS), light detection and ranging (LIDAR), and in-situ measurements were simultaneously performed to diagnose ozone formation sensitivity at the Heshan Observatory in the Pearl River Delta (PRD) region from September to end October 2019. The profiles of tropospheric HCHO and NO<sub>2</sub> were retrieved from MAX-DOAS measurements using an optimal estimation method. The retrieved surface HCHO and NO<sub>2</sub> results were validated with 2,4-dinitrophenylhydrazine (DNPH) and Thermo 42i measurements, and the correlation coefficients (R) were 0.78 and 0.81, respectively. The retrieved tropospheric vertical column densities (VCDs) of HCHO and NO<sub>2</sub> were compared with TROPOMI measurements, and the correlation coefficients (R) were 0.68 and 0.87, respectively. In addition, MAX-DOAS and LIDAR measurements were combined to diagnose a typical planetary boundary layer (PBL) ozone pollution episode from September 28 to October 10, 2019; this episode was analyzed using HCHO/NO<sub>2</sub> ratio as an indicator and was found to be dominated by the VOC-sensitive regime. Moreover, the regime transition of ozone formation sensitivity was calculated using the surface HCHO/NO<sub>2</sub> ratio and increased O<sub>3</sub> from the MAX-DOAS and Thermo 49i measurements, with transition thresholds of 1.43 and 1.78, respectively. Based on this definition, the ozone formation sensitivity at Heshan Observatory varied from VOC-sensitive (<span><math><mrow><mo><</mo></mrow></math></span> 0.2 km and <span><math><mrow><mo>></mo></mrow></math></span> 0.8 km) to NO<sub>x</sub>-sensitive (0.3–0.7 km) to VOC-NO<sub>x</sub>-sensitive (0.2–0.3 km and 0.7–0.8 km). The results improve our understanding of ozone formation sensitivity in the PRD region.</p></div>\",\"PeriodicalId\":8604,\"journal\":{\"name\":\"Atmospheric Pollution Research\",\"volume\":\"15 12\",\"pages\":\"Article 102285\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1309104224002502\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224002502","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ground-based MAX-DOAS observations of tropospheric formaldehyde and nitrogen dioxide: Insights into ozone formation sensitivity
Tropospheric profiles of HCHO, NO2, and O3 are important for analyzing ozone formation mechanism. In this study, ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS), light detection and ranging (LIDAR), and in-situ measurements were simultaneously performed to diagnose ozone formation sensitivity at the Heshan Observatory in the Pearl River Delta (PRD) region from September to end October 2019. The profiles of tropospheric HCHO and NO2 were retrieved from MAX-DOAS measurements using an optimal estimation method. The retrieved surface HCHO and NO2 results were validated with 2,4-dinitrophenylhydrazine (DNPH) and Thermo 42i measurements, and the correlation coefficients (R) were 0.78 and 0.81, respectively. The retrieved tropospheric vertical column densities (VCDs) of HCHO and NO2 were compared with TROPOMI measurements, and the correlation coefficients (R) were 0.68 and 0.87, respectively. In addition, MAX-DOAS and LIDAR measurements were combined to diagnose a typical planetary boundary layer (PBL) ozone pollution episode from September 28 to October 10, 2019; this episode was analyzed using HCHO/NO2 ratio as an indicator and was found to be dominated by the VOC-sensitive regime. Moreover, the regime transition of ozone formation sensitivity was calculated using the surface HCHO/NO2 ratio and increased O3 from the MAX-DOAS and Thermo 49i measurements, with transition thresholds of 1.43 and 1.78, respectively. Based on this definition, the ozone formation sensitivity at Heshan Observatory varied from VOC-sensitive ( 0.2 km and 0.8 km) to NOx-sensitive (0.3–0.7 km) to VOC-NOx-sensitive (0.2–0.3 km and 0.7–0.8 km). The results improve our understanding of ozone formation sensitivity in the PRD region.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.