利用变分深度嵌入实现智能数据辅助语义感知

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ICT Express Pub Date : 2024-08-01 DOI:10.1016/j.icte.2024.05.013
Muhammad Awais , Jinho Choi , Jihong Park , Yun Hee Kim
{"title":"利用变分深度嵌入实现智能数据辅助语义感知","authors":"Muhammad Awais ,&nbsp;Jinho Choi ,&nbsp;Jihong Park ,&nbsp;Yun Hee Kim","doi":"10.1016/j.icte.2024.05.013","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an intelligent sensing framework for Internet-of-Things platforms, where sensor measurements stem from multiple causes. Sensors are selectively chosen for data collection to identify the cause with partial measurements. We employ variational deep embedding, a generative model capable of clustering and generation, to identify causes, cluster measurements accordingly, and determine causes for estimating complete measurements from partial data. These estimates aid in efficient sensor selection for data collection. Results demonstrate early and reliable cause sensing and complete measurement estimation using the proposed framework.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 4","pages":"Pages 824-830"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959524000638/pdfft?md5=aa894f4a797887d18d9153b1e1689bd5&pid=1-s2.0-S2405959524000638-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intelligent data-aided semantic sensing with variational deep embedding\",\"authors\":\"Muhammad Awais ,&nbsp;Jinho Choi ,&nbsp;Jihong Park ,&nbsp;Yun Hee Kim\",\"doi\":\"10.1016/j.icte.2024.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes an intelligent sensing framework for Internet-of-Things platforms, where sensor measurements stem from multiple causes. Sensors are selectively chosen for data collection to identify the cause with partial measurements. We employ variational deep embedding, a generative model capable of clustering and generation, to identify causes, cluster measurements accordingly, and determine causes for estimating complete measurements from partial data. These estimates aid in efficient sensor selection for data collection. Results demonstrate early and reliable cause sensing and complete measurement estimation using the proposed framework.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 4\",\"pages\":\"Pages 824-830\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000638/pdfft?md5=aa894f4a797887d18d9153b1e1689bd5&pid=1-s2.0-S2405959524000638-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000638\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000638","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文为物联网平台提出了一个智能传感框架,其中传感器的测量数据来自多个原因。有选择性地选择传感器进行数据收集,通过部分测量来识别原因。我们采用变分深度嵌入(一种能够聚类和生成的生成模型)来识别原因,对测量结果进行相应聚类,并确定从部分数据中估算出完整测量结果的原因。这些估计有助于高效选择传感器进行数据收集。结果表明,使用所提出的框架,可以尽早可靠地感知原因并进行完整的测量估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent data-aided semantic sensing with variational deep embedding

This paper proposes an intelligent sensing framework for Internet-of-Things platforms, where sensor measurements stem from multiple causes. Sensors are selectively chosen for data collection to identify the cause with partial measurements. We employ variational deep embedding, a generative model capable of clustering and generation, to identify causes, cluster measurements accordingly, and determine causes for estimating complete measurements from partial data. These estimates aid in efficient sensor selection for data collection. Results demonstrate early and reliable cause sensing and complete measurement estimation using the proposed framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
期刊最新文献
Editorial Board Performance analysis of multi-hop low earth orbit satellite network over mixed RF/FSO links Symbol-level precoding scheme robust to channel estimation errors in wireless fading channels Hybrid Approach with Membership-Density Based Oversampling for handling multi-class imbalance in Internet Traffic Identification with overlapping and noise Integrated beamforming and trajectory optimization algorithm for RIS-assisted UAV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1