{"title":"功率半导体封装中焊点空隙变化对功率循环寿命的影响","authors":"Hiroshi Onodera , Nobuyuki Shishido , Daisuke Asari , Hiroshi Isono , Wataru Saito","doi":"10.1016/j.microrel.2024.115471","DOIUrl":null,"url":null,"abstract":"<div><p>Power semiconductor modules, such as IGBT and power MOSFET modules, have been increasingly used due to the growing application market, such as electric vehicles and renewable energy. A long lifetime of power semiconductor modules is strongly required, and the power cycle test is an important evaluation. Cracks in the mount solder of power semiconductor package are one of the main factors affecting the power cycle lifetime due to the increase in thermal resistance. Variations in the mounting process during the package assembly may lead to solder voids in the initial state, causing stress within the solder joint and influencing the power cycle lifetime. This paper reports the effect of the void ratio of chip mount solder on power cycle lifetime. Samples with intentionally varied initial void ratios and void positions were fabricated, and their power cycle lifetimes were evaluated. The results show that the power cycle lifetime is determined by the Coffin-Manson law, even with different void ratios and positions.</p></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"161 ","pages":"Article 115471"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of solder junction void variation in power semiconductor package on power cycle lifetime\",\"authors\":\"Hiroshi Onodera , Nobuyuki Shishido , Daisuke Asari , Hiroshi Isono , Wataru Saito\",\"doi\":\"10.1016/j.microrel.2024.115471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Power semiconductor modules, such as IGBT and power MOSFET modules, have been increasingly used due to the growing application market, such as electric vehicles and renewable energy. A long lifetime of power semiconductor modules is strongly required, and the power cycle test is an important evaluation. Cracks in the mount solder of power semiconductor package are one of the main factors affecting the power cycle lifetime due to the increase in thermal resistance. Variations in the mounting process during the package assembly may lead to solder voids in the initial state, causing stress within the solder joint and influencing the power cycle lifetime. This paper reports the effect of the void ratio of chip mount solder on power cycle lifetime. Samples with intentionally varied initial void ratios and void positions were fabricated, and their power cycle lifetimes were evaluated. The results show that the power cycle lifetime is determined by the Coffin-Manson law, even with different void ratios and positions.</p></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"161 \",\"pages\":\"Article 115471\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271424001513\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424001513","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of solder junction void variation in power semiconductor package on power cycle lifetime
Power semiconductor modules, such as IGBT and power MOSFET modules, have been increasingly used due to the growing application market, such as electric vehicles and renewable energy. A long lifetime of power semiconductor modules is strongly required, and the power cycle test is an important evaluation. Cracks in the mount solder of power semiconductor package are one of the main factors affecting the power cycle lifetime due to the increase in thermal resistance. Variations in the mounting process during the package assembly may lead to solder voids in the initial state, causing stress within the solder joint and influencing the power cycle lifetime. This paper reports the effect of the void ratio of chip mount solder on power cycle lifetime. Samples with intentionally varied initial void ratios and void positions were fabricated, and their power cycle lifetimes were evaluated. The results show that the power cycle lifetime is determined by the Coffin-Manson law, even with different void ratios and positions.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.