通过 Gd DLC 薄膜和离子液体实现可持续润滑,从而提高耐磨性和耐腐蚀性

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL Tribology International Pub Date : 2024-08-16 DOI:10.1016/j.triboint.2024.110130
{"title":"通过 Gd DLC 薄膜和离子液体实现可持续润滑,从而提高耐磨性和耐腐蚀性","authors":"","doi":"10.1016/j.triboint.2024.110130","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the integration of ionic liquids (ILs) with gadolinium diamond-like carbon (Gd-DLC) films as a means of addressing the environmental drawbacks associated with conventional additives, such as zinc dialkyldithiophosphates. Tribological testing initially revealed that higher concentrations of gadolinium in the DLC resulted in improved wear resistance. Further observation of the wear tracks confirmed no corrosion typically seen in steel under bromide-containing ILs, thereby demonstrating the protective capabilities of Gd-DLC. Advanced surface analysis techniques revealed that increased gadolinium content enhances phosphate adsorption, resulting in the generation of protective tribofilms. These findings indicate that Gd-DLC and ILs have the potential to develop sustainable and efficient lubrication systems, significantly enhancing both performance and environmental compatibility of mechanical applications.</p></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable lubrication through Gd DLC films and ionic liquids for wear and corrosion resistance\",\"authors\":\"\",\"doi\":\"10.1016/j.triboint.2024.110130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examines the integration of ionic liquids (ILs) with gadolinium diamond-like carbon (Gd-DLC) films as a means of addressing the environmental drawbacks associated with conventional additives, such as zinc dialkyldithiophosphates. Tribological testing initially revealed that higher concentrations of gadolinium in the DLC resulted in improved wear resistance. Further observation of the wear tracks confirmed no corrosion typically seen in steel under bromide-containing ILs, thereby demonstrating the protective capabilities of Gd-DLC. Advanced surface analysis techniques revealed that increased gadolinium content enhances phosphate adsorption, resulting in the generation of protective tribofilms. These findings indicate that Gd-DLC and ILs have the potential to develop sustainable and efficient lubrication systems, significantly enhancing both performance and environmental compatibility of mechanical applications.</p></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X2400882X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X2400882X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了离子液体(ILs)与钆类金刚石碳(Gd-DLC)薄膜的结合,以此来解决与二烷基二硫代磷酸锌等传统添加剂相关的环境弊端。摩擦学测试初步显示,DLC 中钆的浓度越高,耐磨性越好。对磨损痕迹的进一步观察证实,在含溴离子交换树脂的情况下,钢材通常不会出现腐蚀现象,从而证明了钆-DLC 的保护能力。先进的表面分析技术显示,钆含量的增加会增强磷酸盐的吸附,从而产生保护性三膜。这些研究结果表明,Gd-DLC 和 ILs 具有开发可持续高效润滑系统的潜力,可显著提高机械应用的性能和环境兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable lubrication through Gd DLC films and ionic liquids for wear and corrosion resistance

This study examines the integration of ionic liquids (ILs) with gadolinium diamond-like carbon (Gd-DLC) films as a means of addressing the environmental drawbacks associated with conventional additives, such as zinc dialkyldithiophosphates. Tribological testing initially revealed that higher concentrations of gadolinium in the DLC resulted in improved wear resistance. Further observation of the wear tracks confirmed no corrosion typically seen in steel under bromide-containing ILs, thereby demonstrating the protective capabilities of Gd-DLC. Advanced surface analysis techniques revealed that increased gadolinium content enhances phosphate adsorption, resulting in the generation of protective tribofilms. These findings indicate that Gd-DLC and ILs have the potential to develop sustainable and efficient lubrication systems, significantly enhancing both performance and environmental compatibility of mechanical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
期刊最新文献
Enhanced interlayer adhesion and regulated tribological behaviors of 3D printed poly(ether ether ketone) by annealing Effect of substrate stiffness on interfacial Schallamach wave of flexible film/substrate bilayer structure: Cohesive contact insight Evolution of high vacuum tribological performance of lead-doped hydrogenated diamond-like carbon coatings after atomic oxygen and ultraviolet irradiation Tribological performances of epoxy resin reinforced by a novel biomass intelligent "pool-channel" oil storage and delivery system Molecular dynamics simulation and machine learning prediction of tribological properties of graphene solid-liquid two-phase lubrication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1