Aynun Nahar , Md. Sahadat Hossain , Arup Das , Md. Ahedul Akbor , Umme Sarmeen Akthar , Md. Sha Alam , Nigar Sultana Pinky , Md. Atikur Rahman , Mehedi Hasan , Fariha Afrose
{"title":"利用废报纸制备气凝胶碳以吸附水溶液中的抗糖尿病药物残留物","authors":"Aynun Nahar , Md. Sahadat Hossain , Arup Das , Md. Ahedul Akbor , Umme Sarmeen Akthar , Md. Sha Alam , Nigar Sultana Pinky , Md. Atikur Rahman , Mehedi Hasan , Fariha Afrose","doi":"10.1016/j.jscs.2024.101924","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the waste newspaper was utilized to prepare carbon aerogel (CA) for adsorptive removal of Metformin hydrochloride (MH) (antidiabetic drug residues) from the aqueous system. The prepared CA was characterized using Field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analyser. The MH adsorption was carried out using two types of water, one was laboratory-prepared distilled water and another was real river water. Although, optimum removal around 87 % was observed at pH 3, the removal efficiency at about 63 % estimated at neutral pH. In river water experiment, slightly lower rate of adsorption about 59 % was noticed. Nearly 61 % removal was found for 120 min and then no significant adsorption was found. The pseudo-second-order kinetics and Freundlich isotherm models presented a good interpretation of the adsorption experiment data. Physio-sorption was the primary mechanism of the MH adsorption was confirmed by Temkin and D-R isotherms studies. Regeneration studies demonstrated the removal stability of CA around 32 % until five cycles. An adsorption mechanism was also proposed for the removal of metformin hydrochloride using carbon aerogel.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 5","pages":"Article 101924"},"PeriodicalIF":5.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001194/pdfft?md5=2578a0fefa39cff910276bc885e8cc7b&pid=1-s2.0-S1319610324001194-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Preparation of carbon aerogel from waste newspaper for adsorption of antidiabetic drug residue from aqueous system\",\"authors\":\"Aynun Nahar , Md. Sahadat Hossain , Arup Das , Md. Ahedul Akbor , Umme Sarmeen Akthar , Md. Sha Alam , Nigar Sultana Pinky , Md. Atikur Rahman , Mehedi Hasan , Fariha Afrose\",\"doi\":\"10.1016/j.jscs.2024.101924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the waste newspaper was utilized to prepare carbon aerogel (CA) for adsorptive removal of Metformin hydrochloride (MH) (antidiabetic drug residues) from the aqueous system. The prepared CA was characterized using Field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analyser. The MH adsorption was carried out using two types of water, one was laboratory-prepared distilled water and another was real river water. Although, optimum removal around 87 % was observed at pH 3, the removal efficiency at about 63 % estimated at neutral pH. In river water experiment, slightly lower rate of adsorption about 59 % was noticed. Nearly 61 % removal was found for 120 min and then no significant adsorption was found. The pseudo-second-order kinetics and Freundlich isotherm models presented a good interpretation of the adsorption experiment data. Physio-sorption was the primary mechanism of the MH adsorption was confirmed by Temkin and D-R isotherms studies. Regeneration studies demonstrated the removal stability of CA around 32 % until five cycles. An adsorption mechanism was also proposed for the removal of metformin hydrochloride using carbon aerogel.</p></div>\",\"PeriodicalId\":16974,\"journal\":{\"name\":\"Journal of Saudi Chemical Society\",\"volume\":\"28 5\",\"pages\":\"Article 101924\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319610324001194/pdfft?md5=2578a0fefa39cff910276bc885e8cc7b&pid=1-s2.0-S1319610324001194-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Saudi Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319610324001194\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324001194","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of carbon aerogel from waste newspaper for adsorption of antidiabetic drug residue from aqueous system
In this study, the waste newspaper was utilized to prepare carbon aerogel (CA) for adsorptive removal of Metformin hydrochloride (MH) (antidiabetic drug residues) from the aqueous system. The prepared CA was characterized using Field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analyser. The MH adsorption was carried out using two types of water, one was laboratory-prepared distilled water and another was real river water. Although, optimum removal around 87 % was observed at pH 3, the removal efficiency at about 63 % estimated at neutral pH. In river water experiment, slightly lower rate of adsorption about 59 % was noticed. Nearly 61 % removal was found for 120 min and then no significant adsorption was found. The pseudo-second-order kinetics and Freundlich isotherm models presented a good interpretation of the adsorption experiment data. Physio-sorption was the primary mechanism of the MH adsorption was confirmed by Temkin and D-R isotherms studies. Regeneration studies demonstrated the removal stability of CA around 32 % until five cycles. An adsorption mechanism was also proposed for the removal of metformin hydrochloride using carbon aerogel.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.