H. Purzyńska , G. Golański , M. Sroka , A. Sasiela , A. Zieliński
{"title":"操作后奥氏体超级 304H 钢的微观结构特征和机械性能","authors":"H. Purzyńska , G. Golański , M. Sroka , A. Sasiela , A. Zieliński","doi":"10.1016/j.ijpvp.2024.105294","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents the results of testing the microstructure and mechanical properties of austenitic Super 304H steel after approximately 31,000 h of operation at a temperature of 570 °C. The microstructure analysis showed that the utilization of the tested steel contributed to the precipitation of numerous M<sub>23</sub>C<sub>6</sub> carbides and individual sigma phase particles at grain boundaries, while dispersive ε_Cu and MX particles was observed inside the grains. At the grain boundaries, the precipitates sometimes formed a continuous mesh. The presence of numerous secondary phases resulted in higher than standard strength properties while maintaining the required plastic properties.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"211 ","pages":"Article 105294"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure characterization and mechanical properties of austenitic Super 304H steel after operation\",\"authors\":\"H. Purzyńska , G. Golański , M. Sroka , A. Sasiela , A. Zieliński\",\"doi\":\"10.1016/j.ijpvp.2024.105294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents the results of testing the microstructure and mechanical properties of austenitic Super 304H steel after approximately 31,000 h of operation at a temperature of 570 °C. The microstructure analysis showed that the utilization of the tested steel contributed to the precipitation of numerous M<sub>23</sub>C<sub>6</sub> carbides and individual sigma phase particles at grain boundaries, while dispersive ε_Cu and MX particles was observed inside the grains. At the grain boundaries, the precipitates sometimes formed a continuous mesh. The presence of numerous secondary phases resulted in higher than standard strength properties while maintaining the required plastic properties.</p></div>\",\"PeriodicalId\":54946,\"journal\":{\"name\":\"International Journal of Pressure Vessels and Piping\",\"volume\":\"211 \",\"pages\":\"Article 105294\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pressure Vessels and Piping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308016124001716\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124001716","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Microstructure characterization and mechanical properties of austenitic Super 304H steel after operation
The paper presents the results of testing the microstructure and mechanical properties of austenitic Super 304H steel after approximately 31,000 h of operation at a temperature of 570 °C. The microstructure analysis showed that the utilization of the tested steel contributed to the precipitation of numerous M23C6 carbides and individual sigma phase particles at grain boundaries, while dispersive ε_Cu and MX particles was observed inside the grains. At the grain boundaries, the precipitates sometimes formed a continuous mesh. The presence of numerous secondary phases resulted in higher than standard strength properties while maintaining the required plastic properties.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.