基于生物质碳纳米圈的压阻柔性压力传感器,用于运动捕捉和健康监测

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Communications Pub Date : 2024-08-17 DOI:10.1016/j.coco.2024.102041
{"title":"基于生物质碳纳米圈的压阻柔性压力传感器,用于运动捕捉和健康监测","authors":"","doi":"10.1016/j.coco.2024.102041","DOIUrl":null,"url":null,"abstract":"<div><p>Biomass carbon-based flexible sensors have shown significant potential in various applications. Indeed, biomass carbon-based flexible sensors, such as carbonized cotton fabrics, exhibit limitations in terms of sensitivity and response speed. Herein, a kind of biomass carbon nanosphere-based flexible pressure sensor was proposed and developed by embedding biomass carbon nanospheres on the skin-hair structures of the polydimethylsiloxane surface. The carbon nanospheres were obtained through the carbonization of cuttlefish ink. Owing to the skin-hair structures fabricated on the surface of the composite films, the sensors achieve a sensitivity of 135.2 kPa<sup>−1</sup> in the pressure range of 0–1 kPa. In addition, the sensors exhibit a short response (43 ms) and recovery time (23 ms). With these properties, the sensors can capture and monitor various motions as well as the characteristic waveforms of the wrist pulse, such as the percussion wave (P wave), tidal wave (T wave), and diastolic wave (D wave).</p></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomass carbon nanosphere-based piezoresistive flexible pressure sensors for motion capture and health monitoring\",\"authors\":\"\",\"doi\":\"10.1016/j.coco.2024.102041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biomass carbon-based flexible sensors have shown significant potential in various applications. Indeed, biomass carbon-based flexible sensors, such as carbonized cotton fabrics, exhibit limitations in terms of sensitivity and response speed. Herein, a kind of biomass carbon nanosphere-based flexible pressure sensor was proposed and developed by embedding biomass carbon nanospheres on the skin-hair structures of the polydimethylsiloxane surface. The carbon nanospheres were obtained through the carbonization of cuttlefish ink. Owing to the skin-hair structures fabricated on the surface of the composite films, the sensors achieve a sensitivity of 135.2 kPa<sup>−1</sup> in the pressure range of 0–1 kPa. In addition, the sensors exhibit a short response (43 ms) and recovery time (23 ms). With these properties, the sensors can capture and monitor various motions as well as the characteristic waveforms of the wrist pulse, such as the percussion wave (P wave), tidal wave (T wave), and diastolic wave (D wave).</p></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213924002328\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924002328","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

生物质碳基柔性传感器在各种应用中显示出巨大的潜力。事实上,碳化棉织物等生物质碳基柔性传感器在灵敏度和响应速度方面存在局限性。本文通过在聚二甲基硅氧烷表面的皮毛结构上嵌入生物质碳纳米球,提出并开发了一种基于生物质碳纳米球的柔性压力传感器。碳纳米球是通过墨鱼墨汁碳化获得的。由于复合薄膜表面的皮毛结构,传感器在 0-1 kPa 压力范围内的灵敏度达到 135.2 kPa-1。此外,传感器的响应时间(43 毫秒)和恢复时间(23 毫秒)都很短。凭借这些特性,传感器可以捕捉和监测各种运动以及腕部脉搏的特征波形,如叩击波(P 波)、潮汐波(T 波)和舒张波(D 波)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomass carbon nanosphere-based piezoresistive flexible pressure sensors for motion capture and health monitoring

Biomass carbon-based flexible sensors have shown significant potential in various applications. Indeed, biomass carbon-based flexible sensors, such as carbonized cotton fabrics, exhibit limitations in terms of sensitivity and response speed. Herein, a kind of biomass carbon nanosphere-based flexible pressure sensor was proposed and developed by embedding biomass carbon nanospheres on the skin-hair structures of the polydimethylsiloxane surface. The carbon nanospheres were obtained through the carbonization of cuttlefish ink. Owing to the skin-hair structures fabricated on the surface of the composite films, the sensors achieve a sensitivity of 135.2 kPa−1 in the pressure range of 0–1 kPa. In addition, the sensors exhibit a short response (43 ms) and recovery time (23 ms). With these properties, the sensors can capture and monitor various motions as well as the characteristic waveforms of the wrist pulse, such as the percussion wave (P wave), tidal wave (T wave), and diastolic wave (D wave).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
期刊最新文献
Editorial Board An ultra-low density and mechanically robust ANFs/MXene/UiO-66-NH2 aerogel for enhancing thermal conductivity and tribological properties of epoxy resins Microwave absorption characterization of hollow and porous rGO-FeCoNiCrMn/EC/EP composite microsphere materials Reactive extrusion for efficient preparation of high temperature resistant PA6T/66/BN composites with great thermal management and mechanical properties In-situ fabrication of a strong and stiff MgAl2O4/Al-based composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1