基于知识的 CPW-Fed 开路存根负载 C 形微带天线代理建模方法

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of RF and Microwave Computer-Aided Engineering Pub Date : 2024-08-20 DOI:10.1155/2024/6247693
Cem Gocen, Ismail Akdag, Tarlan Mahouti, Mehmet A. Belen, Merih Palandöken, Peyman Mahouti
{"title":"基于知识的 CPW-Fed 开路存根负载 C 形微带天线代理建模方法","authors":"Cem Gocen,&nbsp;Ismail Akdag,&nbsp;Tarlan Mahouti,&nbsp;Mehmet A. Belen,&nbsp;Merih Palandöken,&nbsp;Peyman Mahouti","doi":"10.1155/2024/6247693","DOIUrl":null,"url":null,"abstract":"<p>Antenna systems with more complicated geometries have been created as a result of evolving technology and rising performance standards in the industry. The geometric complexity of modern antennas makes it difficult for circuit theory tools or parametric studies to produce adequate findings, making it difficult for designers to create the designs they want. Even though full-wave electromagnetic (EM) modeling tools are widely utilized today, they are computationally expensive for local optimization alone. In order to speed up the stages of the simulation-based design of high-performance systems, many strategies have been devised to solve and/or minimize this challenge. Thanks to their adaptability, affordable computing costs, and widespread usage, surrogate-based models have grown to be a well-known branch. Herein, an innovative knowledge-based methodology for building a coplanar waveguide (CPW)-fed antenna using surrogate models is presented. In this work, a knowledge-based methodology using surrogate modeling is applied as an advanced approach that combines domain-specific knowledge with surrogate models to optimize the performance of a microwave antenna in a computationally efficient manner. For this aim, firstly, a 3D-EM simulator is deployed to generate a dataset for a deep learning-based surrogate model. When compared to the conventional optimization approach using direct deployment of EM simulators which is around 47.2 h, the proposed surrogate model approach has an average cost reduction of over 50% which corresponds to a total computational time of 24.3 h. The collected results are compared to performance metrics for prototype antenna designs as well as simulated outcomes from EM simulators and counterpart works from the literature.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6247693","citationCount":"0","resultStr":"{\"title\":\"Knowledge-Based Methodology of CPW-Fed Open Stub Loaded C-Shaped Microstrip Antenna by Surrogate-Based Modeling\",\"authors\":\"Cem Gocen,&nbsp;Ismail Akdag,&nbsp;Tarlan Mahouti,&nbsp;Mehmet A. Belen,&nbsp;Merih Palandöken,&nbsp;Peyman Mahouti\",\"doi\":\"10.1155/2024/6247693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antenna systems with more complicated geometries have been created as a result of evolving technology and rising performance standards in the industry. The geometric complexity of modern antennas makes it difficult for circuit theory tools or parametric studies to produce adequate findings, making it difficult for designers to create the designs they want. Even though full-wave electromagnetic (EM) modeling tools are widely utilized today, they are computationally expensive for local optimization alone. In order to speed up the stages of the simulation-based design of high-performance systems, many strategies have been devised to solve and/or minimize this challenge. Thanks to their adaptability, affordable computing costs, and widespread usage, surrogate-based models have grown to be a well-known branch. Herein, an innovative knowledge-based methodology for building a coplanar waveguide (CPW)-fed antenna using surrogate models is presented. In this work, a knowledge-based methodology using surrogate modeling is applied as an advanced approach that combines domain-specific knowledge with surrogate models to optimize the performance of a microwave antenna in a computationally efficient manner. For this aim, firstly, a 3D-EM simulator is deployed to generate a dataset for a deep learning-based surrogate model. When compared to the conventional optimization approach using direct deployment of EM simulators which is around 47.2 h, the proposed surrogate model approach has an average cost reduction of over 50% which corresponds to a total computational time of 24.3 h. The collected results are compared to performance metrics for prototype antenna designs as well as simulated outcomes from EM simulators and counterpart works from the literature.</p>\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6247693\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6247693\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6247693","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着技术的不断发展和行业性能标准的不断提高,几何形状更加复杂的天线系统应运而生。现代天线的几何复杂性使得电路理论工具或参数研究难以得出充分的结论,从而使设计人员难以创建他们想要的设计。尽管目前全波电磁(EM)建模工具已得到广泛应用,但仅就局部优化而言,这些工具的计算成本非常昂贵。为了加快基于仿真的高性能系统设计阶段,人们设计了许多策略来解决和/或尽量减少这一难题。由于其适应性强、计算成本低廉、应用广泛,基于代理的模型已成为一个著名的分支。本文提出了一种基于知识的创新方法,利用代用模型构建共面波导(CPW)馈源天线。在这项工作中,使用代用模型的基于知识的方法被作为一种先进的方法加以应用,它将特定领域的知识与代用模型相结合,以计算效率高的方式优化微波天线的性能。为此,首先部署了三维电磁模拟器,为基于深度学习的代用模型生成数据集。收集的结果与原型天线设计的性能指标、电磁模拟器的模拟结果以及文献中的对应作品进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge-Based Methodology of CPW-Fed Open Stub Loaded C-Shaped Microstrip Antenna by Surrogate-Based Modeling

Antenna systems with more complicated geometries have been created as a result of evolving technology and rising performance standards in the industry. The geometric complexity of modern antennas makes it difficult for circuit theory tools or parametric studies to produce adequate findings, making it difficult for designers to create the designs they want. Even though full-wave electromagnetic (EM) modeling tools are widely utilized today, they are computationally expensive for local optimization alone. In order to speed up the stages of the simulation-based design of high-performance systems, many strategies have been devised to solve and/or minimize this challenge. Thanks to their adaptability, affordable computing costs, and widespread usage, surrogate-based models have grown to be a well-known branch. Herein, an innovative knowledge-based methodology for building a coplanar waveguide (CPW)-fed antenna using surrogate models is presented. In this work, a knowledge-based methodology using surrogate modeling is applied as an advanced approach that combines domain-specific knowledge with surrogate models to optimize the performance of a microwave antenna in a computationally efficient manner. For this aim, firstly, a 3D-EM simulator is deployed to generate a dataset for a deep learning-based surrogate model. When compared to the conventional optimization approach using direct deployment of EM simulators which is around 47.2 h, the proposed surrogate model approach has an average cost reduction of over 50% which corresponds to a total computational time of 24.3 h. The collected results are compared to performance metrics for prototype antenna designs as well as simulated outcomes from EM simulators and counterpart works from the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
期刊最新文献
Numerical Analysis of Therapeutic Effects by Varying Slot Numbers and Slot-to-Slot Distance in Microwave Ablation Using Multislot Coaxial Antenna Study of Electromagnetic Radiation From High-Speed Train Voice and Data Antennae on the Health of Pacemaker Wearers Miniaturize Dual-Band Open-Loop Resonator-Based MIMO Antenna With Wide Bandwidth and High Gain Multifunctional Frequency-Selective Rasorber With Passband Stealth Performance A 10 × 10 MIMO Multiband Broadband Planar Antenna for Multiband Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1