使用管状动态框架装置进行骨膜扩张成骨:大鼠实验研究

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-08-23 DOI:10.1002/jbm.b.35471
Karen Hoshi, Kazuhiro Imoto, Yuta Yanagisawa, Shinnosuke Nogami, Hidero Unuma, Kensuke Yamauchi
{"title":"使用管状动态框架装置进行骨膜扩张成骨:大鼠实验研究","authors":"Karen Hoshi,&nbsp;Kazuhiro Imoto,&nbsp;Yuta Yanagisawa,&nbsp;Shinnosuke Nogami,&nbsp;Hidero Unuma,&nbsp;Kensuke Yamauchi","doi":"10.1002/jbm.b.35471","DOIUrl":null,"url":null,"abstract":"<p>Periosteal expansion osteogenesis (PEO) is a technique for augmenting bone by creating a gradual separation between the bone and periosteum. This study assessed PEO-induced bone formation around the femurs of rats using a dynamic frame device (DFD), consisting of a shape memory membrane made of polyethylene terephthalate (PET) formed into a tubular shape. The DFDs, consisting of a PET membrane coated with hydroxyapatite (HA)/gelatin on the bone-contact surface, were inserted between the periosteum and bone of the femurs of rats. In the experimental group, DFDs were suture-fixed to the femur with 4–0 Vicryl Rapid; in the control group, 4–0 silk thread was used for fixation. Five rats per group were euthanized at intervals of 3, 5, and 8 weeks postoperatively. Bone formation was evaluated via micro-CT imaging, histomorphometry, and histological analysis. Morphological analysis revealed new bone between the femur and the periosteum, expanded by the DFD, in all groups. The mean values of new bone were 0.30 mm<sup>2</sup> proximally, 0.18 mm<sup>2</sup> centrally, and 0.82 mm<sup>2</sup> distally in the control group, compared to 1.05 mm<sup>2</sup> proximally, 0.27 mm<sup>2</sup> centrally, and 0.84 mm<sup>2</sup> distally in the experimental group. A significant difference in new bone was observed in the proximal region of the experimental group. Histological examination showed that a single layer of newly formed neoplastic bone was noted on the cortical bone surface across all sites. The proximal portion displayed a bone marrow cavity at the center, encircled by a thick bone cortex with a layered structure. New bone formation was notable between existing cortical bone and the periosteum, particularly at both ends of the DFD. The use of PET in PEO was a viable option for achieving ideal bone morphology.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35471","citationCount":"0","resultStr":"{\"title\":\"Periosteal expansion osteogenesis using a tubular dynamic frame device: An experimental study in rats\",\"authors\":\"Karen Hoshi,&nbsp;Kazuhiro Imoto,&nbsp;Yuta Yanagisawa,&nbsp;Shinnosuke Nogami,&nbsp;Hidero Unuma,&nbsp;Kensuke Yamauchi\",\"doi\":\"10.1002/jbm.b.35471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Periosteal expansion osteogenesis (PEO) is a technique for augmenting bone by creating a gradual separation between the bone and periosteum. This study assessed PEO-induced bone formation around the femurs of rats using a dynamic frame device (DFD), consisting of a shape memory membrane made of polyethylene terephthalate (PET) formed into a tubular shape. The DFDs, consisting of a PET membrane coated with hydroxyapatite (HA)/gelatin on the bone-contact surface, were inserted between the periosteum and bone of the femurs of rats. In the experimental group, DFDs were suture-fixed to the femur with 4–0 Vicryl Rapid; in the control group, 4–0 silk thread was used for fixation. Five rats per group were euthanized at intervals of 3, 5, and 8 weeks postoperatively. Bone formation was evaluated via micro-CT imaging, histomorphometry, and histological analysis. Morphological analysis revealed new bone between the femur and the periosteum, expanded by the DFD, in all groups. The mean values of new bone were 0.30 mm<sup>2</sup> proximally, 0.18 mm<sup>2</sup> centrally, and 0.82 mm<sup>2</sup> distally in the control group, compared to 1.05 mm<sup>2</sup> proximally, 0.27 mm<sup>2</sup> centrally, and 0.84 mm<sup>2</sup> distally in the experimental group. A significant difference in new bone was observed in the proximal region of the experimental group. Histological examination showed that a single layer of newly formed neoplastic bone was noted on the cortical bone surface across all sites. The proximal portion displayed a bone marrow cavity at the center, encircled by a thick bone cortex with a layered structure. New bone formation was notable between existing cortical bone and the periosteum, particularly at both ends of the DFD. The use of PET in PEO was a viable option for achieving ideal bone morphology.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35471\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35471\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35471","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

骨膜扩张成骨(PEO)是一种通过在骨与骨膜之间形成逐渐分离来增强骨量的技术。本研究使用动态框架装置(DFD)评估了 PEO 诱导的大鼠股骨周围骨形成,该装置由聚对苯二甲酸乙二醇酯(PET)制成的形状记忆膜形成管状。动态框架装置由在骨接触面上涂有羟基磷灰石(HA)/明胶的 PET 膜组成,插入大鼠股骨的骨膜和骨之间。实验组用 4-0 Vicryl Rapid 将 DFD 与股骨缝合固定;对照组用 4-0 丝线固定。每组五只大鼠分别在术后 3、5 和 8 周安乐死。通过显微 CT 成像、组织形态测量和组织学分析评估骨形成情况。形态学分析表明,所有组的股骨和骨膜之间都有新骨,并由 DFD 扩大。对照组的新骨平均值为近端 0.30 平方毫米,中心 0.18 平方毫米,远端 0.82 平方毫米,而实验组的新骨平均值为近端 1.05 平方毫米,中心 0.27 平方毫米,远端 0.84 平方毫米。在实验组近端区域观察到的新骨有明显差异。组织学检查显示,所有部位的皮质骨表面都有一层新形成的肿瘤骨。近端中央有一个骨髓腔,周围是厚厚的骨皮质,具有分层结构。在现有的皮质骨和骨膜之间有明显的新骨形成,尤其是在 DFD 的两端。在 PEO 中使用 PET 是实现理想骨形态的可行方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Periosteal expansion osteogenesis using a tubular dynamic frame device: An experimental study in rats

Periosteal expansion osteogenesis (PEO) is a technique for augmenting bone by creating a gradual separation between the bone and periosteum. This study assessed PEO-induced bone formation around the femurs of rats using a dynamic frame device (DFD), consisting of a shape memory membrane made of polyethylene terephthalate (PET) formed into a tubular shape. The DFDs, consisting of a PET membrane coated with hydroxyapatite (HA)/gelatin on the bone-contact surface, were inserted between the periosteum and bone of the femurs of rats. In the experimental group, DFDs were suture-fixed to the femur with 4–0 Vicryl Rapid; in the control group, 4–0 silk thread was used for fixation. Five rats per group were euthanized at intervals of 3, 5, and 8 weeks postoperatively. Bone formation was evaluated via micro-CT imaging, histomorphometry, and histological analysis. Morphological analysis revealed new bone between the femur and the periosteum, expanded by the DFD, in all groups. The mean values of new bone were 0.30 mm2 proximally, 0.18 mm2 centrally, and 0.82 mm2 distally in the control group, compared to 1.05 mm2 proximally, 0.27 mm2 centrally, and 0.84 mm2 distally in the experimental group. A significant difference in new bone was observed in the proximal region of the experimental group. Histological examination showed that a single layer of newly formed neoplastic bone was noted on the cortical bone surface across all sites. The proximal portion displayed a bone marrow cavity at the center, encircled by a thick bone cortex with a layered structure. New bone formation was notable between existing cortical bone and the periosteum, particularly at both ends of the DFD. The use of PET in PEO was a viable option for achieving ideal bone morphology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE) Issue Information Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity In Vitro and In Vivo Biocompatibility of Bacterial Cellulose Molecular Biomarkers for In Vitro Thrombogenicity Assessment of Medical Device Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1