{"title":"病毒构建模块聚合物体内合成化学反应的数学分析。","authors":"Yuewu Liu, Yan Peng","doi":"10.3934/mbe.2024279","DOIUrl":null,"url":null,"abstract":"<p><p>For numerous viruses, their capsid assembly is composed of two steps. The first step is that virus structural protein monomers are polymerized to building blocks. Then, these building blocks are cumulative and efficiently assembled to virus capsid shell. These building block polymerization reactions in the first step are fundamental for virus assembly, and some drug targets were found in this step. In this work, we focused on the first step. Often, virus building blocks consisted of less than six monomers. That is, dimer, trimer, tetramer, pentamer, and hexamer. We presented mathematical models for polymerization chemical reactions of these five building blocks, respectively. Then, we proved the existence and uniqueness of the positive equilibrium solution for these mathematical models one by one. Subsequently, we also analyzed the stability of the equilibrium states, respectively. These results may provide further insight into property of virus building block polymerization chemical reactions in <i>vivo</i>.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6393-6406"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical analysis of synthesis chemical reactions for virus building block polymers in <i>vivo</i>.\",\"authors\":\"Yuewu Liu, Yan Peng\",\"doi\":\"10.3934/mbe.2024279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For numerous viruses, their capsid assembly is composed of two steps. The first step is that virus structural protein monomers are polymerized to building blocks. Then, these building blocks are cumulative and efficiently assembled to virus capsid shell. These building block polymerization reactions in the first step are fundamental for virus assembly, and some drug targets were found in this step. In this work, we focused on the first step. Often, virus building blocks consisted of less than six monomers. That is, dimer, trimer, tetramer, pentamer, and hexamer. We presented mathematical models for polymerization chemical reactions of these five building blocks, respectively. Then, we proved the existence and uniqueness of the positive equilibrium solution for these mathematical models one by one. Subsequently, we also analyzed the stability of the equilibrium states, respectively. These results may provide further insight into property of virus building block polymerization chemical reactions in <i>vivo</i>.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 6\",\"pages\":\"6393-6406\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024279\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024279","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Mathematical analysis of synthesis chemical reactions for virus building block polymers in vivo.
For numerous viruses, their capsid assembly is composed of two steps. The first step is that virus structural protein monomers are polymerized to building blocks. Then, these building blocks are cumulative and efficiently assembled to virus capsid shell. These building block polymerization reactions in the first step are fundamental for virus assembly, and some drug targets were found in this step. In this work, we focused on the first step. Often, virus building blocks consisted of less than six monomers. That is, dimer, trimer, tetramer, pentamer, and hexamer. We presented mathematical models for polymerization chemical reactions of these five building blocks, respectively. Then, we proved the existence and uniqueness of the positive equilibrium solution for these mathematical models one by one. Subsequently, we also analyzed the stability of the equilibrium states, respectively. These results may provide further insight into property of virus building block polymerization chemical reactions in vivo.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).