Seungdae Oh, Anh H Nguyen, Ji-Su Kim, Sang-Yeop Chung, Sung Kyu Maeng, Young-Hoon Jung, Kyungjin Cho
{"title":"微生物群-生物炭复合材料可协同消除抗生素混合物及其有毒副产品对环境造成的风险。","authors":"Seungdae Oh, Anh H Nguyen, Ji-Su Kim, Sang-Yeop Chung, Sung Kyu Maeng, Young-Hoon Jung, Kyungjin Cho","doi":"10.1016/j.jhazmat.2024.135474","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed a continuous reactor system employing a hybrid hydrogel composite synthesized using a complex sludge microbiome and an adsorbent (HSA). This HSA-based system effectively eliminated the environmental risks associated with a mixture of the antibiotics ciprofloxacin and sulfamethoxazole, which exhibited higher toxicity in combination than individually at environmentally relevant levels. Analytical chemistry experiments revealed the in-situ generation of various byproducts (BPs) within the bioreactor system, with two of these BPs recording toxicity levels that surpassed those of their parent compound. The HSA approach successfully prevented the functional microbiome from being washed out of the reactor, while HSA efficiently removed antibiotic residues in their original and BP forms through synergistic adsorptive and biotransformation mechanisms, ultimately reducing the overall ecotoxicity. The use of HSA thus demonstrates promise not only as a mean to reduce the threat posed by toxic antibiotic residues to aquatic ecosystems but also as a practical solution to operational challenges, such as biomass loss/washout, that are frequently encountered in various environmental bioprocesses.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A microbiome-biochar composite synergistically eliminates the environmental risks of antibiotic mixtures and their toxic byproducts.\",\"authors\":\"Seungdae Oh, Anh H Nguyen, Ji-Su Kim, Sang-Yeop Chung, Sung Kyu Maeng, Young-Hoon Jung, Kyungjin Cho\",\"doi\":\"10.1016/j.jhazmat.2024.135474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study developed a continuous reactor system employing a hybrid hydrogel composite synthesized using a complex sludge microbiome and an adsorbent (HSA). This HSA-based system effectively eliminated the environmental risks associated with a mixture of the antibiotics ciprofloxacin and sulfamethoxazole, which exhibited higher toxicity in combination than individually at environmentally relevant levels. Analytical chemistry experiments revealed the in-situ generation of various byproducts (BPs) within the bioreactor system, with two of these BPs recording toxicity levels that surpassed those of their parent compound. The HSA approach successfully prevented the functional microbiome from being washed out of the reactor, while HSA efficiently removed antibiotic residues in their original and BP forms through synergistic adsorptive and biotransformation mechanisms, ultimately reducing the overall ecotoxicity. The use of HSA thus demonstrates promise not only as a mean to reduce the threat posed by toxic antibiotic residues to aquatic ecosystems but also as a practical solution to operational challenges, such as biomass loss/washout, that are frequently encountered in various environmental bioprocesses.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A microbiome-biochar composite synergistically eliminates the environmental risks of antibiotic mixtures and their toxic byproducts.
This study developed a continuous reactor system employing a hybrid hydrogel composite synthesized using a complex sludge microbiome and an adsorbent (HSA). This HSA-based system effectively eliminated the environmental risks associated with a mixture of the antibiotics ciprofloxacin and sulfamethoxazole, which exhibited higher toxicity in combination than individually at environmentally relevant levels. Analytical chemistry experiments revealed the in-situ generation of various byproducts (BPs) within the bioreactor system, with two of these BPs recording toxicity levels that surpassed those of their parent compound. The HSA approach successfully prevented the functional microbiome from being washed out of the reactor, while HSA efficiently removed antibiotic residues in their original and BP forms through synergistic adsorptive and biotransformation mechanisms, ultimately reducing the overall ecotoxicity. The use of HSA thus demonstrates promise not only as a mean to reduce the threat posed by toxic antibiotic residues to aquatic ecosystems but also as a practical solution to operational challenges, such as biomass loss/washout, that are frequently encountered in various environmental bioprocesses.