{"title":"阴离子杂化凝胶的原位哈洛亚基官能化,可轻松实现特定位点(烷基)酰胺和羧基官能化","authors":"","doi":"10.1016/j.polymer.2024.127507","DOIUrl":null,"url":null,"abstract":"<div><p>Design of functional materials with tunable properties based on anionically-modified copolymer network of poly (N-isopropyl acrylamide-co-methacrylic acid) P(NIPA-co-MA) containing linear polyacrylamide and various amounts of Halloysite nanotubes (Hal) was presented using a facile route of solution casting. The organic/inorganic nanostructures based on thermo-responsive PNIPA were constructed to create hybrid materials via in situ polymerization with different Hal-loading and then used for the removal of cationic methylene blue (MB) dye from aqueous solutions. To achieve the desired mechanical property, the optimum composition of hybrids was determined following a simple and cost-effective synthesis procedure. In situ one-pot polymerization was promoted by semi-IPN formation, following a much simpler route than traditional preparation approaches for stable cross-linked hybrid formation. The swelling of hybrids decreased by 2.9-fold with loading of 5.40 % Hal, confirming the hydrogen bonding interactions between Hal and PAAm/P(NIPA-co-MA) network. The mechanical properties of Hal-doped hybrid gels showed an increase–decrease tendency with increase of Hal-content from 0.80 to 5.40 % (w/v) due to the high aspect ratio of Hal and strong secondary interactions between Hal and PAAm/P(NIPA-co-MA) chains. The effective cross-link density for Hal-doped hybrids was expressed by a cubic polynomial as a function of Hal concentration. Temperature-sensitive swelling results showed that the advantage of sustained release property of Hal can be combined with excellent controllability of PNIPA-based network. Adsorption results of MB onto Hal-doped hybrids bearing methacrylic acid moieties demonstrated their potential as efficient adsorbents for the removal of cationic dyes. A new route offered by the proposed procedure for design of hybrids containing “green” one-dimensional nanofillers creates an innovative perspective on robust hybrid structures for practical applications.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ halloysite functionalization of anionic hybrid gels possessing easily implemented site-specific (alkyl)amide and carboxyl groups\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Design of functional materials with tunable properties based on anionically-modified copolymer network of poly (N-isopropyl acrylamide-co-methacrylic acid) P(NIPA-co-MA) containing linear polyacrylamide and various amounts of Halloysite nanotubes (Hal) was presented using a facile route of solution casting. The organic/inorganic nanostructures based on thermo-responsive PNIPA were constructed to create hybrid materials via in situ polymerization with different Hal-loading and then used for the removal of cationic methylene blue (MB) dye from aqueous solutions. To achieve the desired mechanical property, the optimum composition of hybrids was determined following a simple and cost-effective synthesis procedure. In situ one-pot polymerization was promoted by semi-IPN formation, following a much simpler route than traditional preparation approaches for stable cross-linked hybrid formation. The swelling of hybrids decreased by 2.9-fold with loading of 5.40 % Hal, confirming the hydrogen bonding interactions between Hal and PAAm/P(NIPA-co-MA) network. The mechanical properties of Hal-doped hybrid gels showed an increase–decrease tendency with increase of Hal-content from 0.80 to 5.40 % (w/v) due to the high aspect ratio of Hal and strong secondary interactions between Hal and PAAm/P(NIPA-co-MA) chains. The effective cross-link density for Hal-doped hybrids was expressed by a cubic polynomial as a function of Hal concentration. Temperature-sensitive swelling results showed that the advantage of sustained release property of Hal can be combined with excellent controllability of PNIPA-based network. Adsorption results of MB onto Hal-doped hybrids bearing methacrylic acid moieties demonstrated their potential as efficient adsorbents for the removal of cationic dyes. A new route offered by the proposed procedure for design of hybrids containing “green” one-dimensional nanofillers creates an innovative perspective on robust hybrid structures for practical applications.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124008437\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124008437","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
本研究采用溶液浇铸的简便方法,在阴离子改性聚(N-异丙基丙烯酰胺-共甲基丙烯酸)P(NIPA-co-MA)共聚物网络的基础上设计了具有可调特性的功能材料,该网络含有线性聚丙烯酰胺和不同数量的哈洛来石纳米管(Hal)。这种基于热响应 PNIPA 的有机/无机纳米结构是通过不同 Hal 负载量的原位聚合来制造杂化材料的,然后用于去除水溶液中的阳离子亚甲基蓝(MB)染料。为了获得理想的机械性能,通过简单而经济的合成程序确定了杂化材料的最佳成分。半 IPN 的形成促进了原位一锅聚合,与传统的稳定交联杂化形成的制备方法相比,这种方法的路线要简单得多。当掺入 5.40% 的 Hal 时,杂化物的膨胀率降低了 2.9 倍,这证实了 Hal 与 PAAm/P(NIPA-co-MA)网络之间的氢键相互作用。由于 Hal 的高纵横比以及 Hal 与 PAAm/P(NIPA-co-MA)链之间的强次级相互作用,掺杂 Hal 的杂化凝胶的力学性能随着 Hal 含量从 0.80% 增加到 5.40%(w/v)呈现出递增递减的趋势。掺杂 Hal 的混合物的有效交联密度与 Hal 浓度成三次多项式关系。对温度敏感的溶胀结果表明,Hal 的持续释放特性优势与基于 PNIPA 的网络的出色可控性相结合。甲基溴在掺杂了甲基丙烯酸分子的 Hal 混合材料上的吸附结果表明,它们具有作为高效吸附剂去除阳离子染料的潜力。所提出的设计含有 "绿色 "一维纳米填料的杂化物的程序提供了一条新的途径,为实际应用中的坚固杂化物结构开辟了一个创新的视角。
In-situ halloysite functionalization of anionic hybrid gels possessing easily implemented site-specific (alkyl)amide and carboxyl groups
Design of functional materials with tunable properties based on anionically-modified copolymer network of poly (N-isopropyl acrylamide-co-methacrylic acid) P(NIPA-co-MA) containing linear polyacrylamide and various amounts of Halloysite nanotubes (Hal) was presented using a facile route of solution casting. The organic/inorganic nanostructures based on thermo-responsive PNIPA were constructed to create hybrid materials via in situ polymerization with different Hal-loading and then used for the removal of cationic methylene blue (MB) dye from aqueous solutions. To achieve the desired mechanical property, the optimum composition of hybrids was determined following a simple and cost-effective synthesis procedure. In situ one-pot polymerization was promoted by semi-IPN formation, following a much simpler route than traditional preparation approaches for stable cross-linked hybrid formation. The swelling of hybrids decreased by 2.9-fold with loading of 5.40 % Hal, confirming the hydrogen bonding interactions between Hal and PAAm/P(NIPA-co-MA) network. The mechanical properties of Hal-doped hybrid gels showed an increase–decrease tendency with increase of Hal-content from 0.80 to 5.40 % (w/v) due to the high aspect ratio of Hal and strong secondary interactions between Hal and PAAm/P(NIPA-co-MA) chains. The effective cross-link density for Hal-doped hybrids was expressed by a cubic polynomial as a function of Hal concentration. Temperature-sensitive swelling results showed that the advantage of sustained release property of Hal can be combined with excellent controllability of PNIPA-based network. Adsorption results of MB onto Hal-doped hybrids bearing methacrylic acid moieties demonstrated their potential as efficient adsorbents for the removal of cationic dyes. A new route offered by the proposed procedure for design of hybrids containing “green” one-dimensional nanofillers creates an innovative perspective on robust hybrid structures for practical applications.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.