{"title":"从 magnolol 中提取的含硅氧烷环氧树脂,具有低介电特性、优异的韧性和阻燃性能","authors":"","doi":"10.1016/j.polymer.2024.127521","DOIUrl":null,"url":null,"abstract":"<div><p>The entanglement disorder, highly polar groups and carbon-rich structure of conventional epoxy resins result in high dielectric constants and flammability, posing challenges to the development of high-frequency communications. Therefore, a silicone-containing active ester curing agent (FMAE) derived from magnolol was synthesized via a straightforward two-step process. And a thermosetting resin (FMAE/TGDDM) was then obtained by moisture self-cross-linking as well as curing epoxy N, N, N, N-tetraethoxypropyl-4, 4-diaminodiphenylmethane (TGDDM). The epoxy resin (MAE/TGDDM) cured by MAE that was not undergoing click chemistry was used for comparison. The results showed that the large volume of curing agents (31.86 Å × 14.98 Å × 9.03 Å for FMAE, 16.01 Å × 11.46 Å × 8.09 Å for MAE) and the absence of –OH enabled both resins to have excellent dielectric properties, especially FMAE/TGDDM, with a D<sub>k</sub> of 2.78 and a D<sub>f</sub> of 0.0066 at 10 MHz. Additionally, FMAE/TGDDM demonstrated favorable impact resistance (43.9 kJ/m<sup>2</sup>) and lower hygroscopicity (0.56%) than MAE/TGDDM, which due to the introduction of siloxane chain (Si% = 7.08%) and the increase of the crosslinking density (2302 mol/cm<sup>3</sup> vs 6751 mol/cm<sup>3</sup>). Furthermore, the charring rate of FMAE/TGDDM was 39.1%, almost twice that of MAE/TGDDM, and the PHHR and THR were 201.2 W/g and 22.6 kJ/g, 103.9% and 67.7% lower than MAE/TGDDM, respectively, proving that the intrinsic flame retardancy of FMAE/TGDDM. Hence, this paper provides a strategy to synergistically address the limitations of TGDDM and conventional epoxy resins for impact resistance, dielectric properties and flame retardancy through a simple structural design.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Siloxane-containing epoxy resins derived from magnolol with low dielectric properties, excellent toughness, and flame retardancy\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The entanglement disorder, highly polar groups and carbon-rich structure of conventional epoxy resins result in high dielectric constants and flammability, posing challenges to the development of high-frequency communications. Therefore, a silicone-containing active ester curing agent (FMAE) derived from magnolol was synthesized via a straightforward two-step process. And a thermosetting resin (FMAE/TGDDM) was then obtained by moisture self-cross-linking as well as curing epoxy N, N, N, N-tetraethoxypropyl-4, 4-diaminodiphenylmethane (TGDDM). The epoxy resin (MAE/TGDDM) cured by MAE that was not undergoing click chemistry was used for comparison. The results showed that the large volume of curing agents (31.86 Å × 14.98 Å × 9.03 Å for FMAE, 16.01 Å × 11.46 Å × 8.09 Å for MAE) and the absence of –OH enabled both resins to have excellent dielectric properties, especially FMAE/TGDDM, with a D<sub>k</sub> of 2.78 and a D<sub>f</sub> of 0.0066 at 10 MHz. Additionally, FMAE/TGDDM demonstrated favorable impact resistance (43.9 kJ/m<sup>2</sup>) and lower hygroscopicity (0.56%) than MAE/TGDDM, which due to the introduction of siloxane chain (Si% = 7.08%) and the increase of the crosslinking density (2302 mol/cm<sup>3</sup> vs 6751 mol/cm<sup>3</sup>). Furthermore, the charring rate of FMAE/TGDDM was 39.1%, almost twice that of MAE/TGDDM, and the PHHR and THR were 201.2 W/g and 22.6 kJ/g, 103.9% and 67.7% lower than MAE/TGDDM, respectively, proving that the intrinsic flame retardancy of FMAE/TGDDM. Hence, this paper provides a strategy to synergistically address the limitations of TGDDM and conventional epoxy resins for impact resistance, dielectric properties and flame retardancy through a simple structural design.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124008577\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124008577","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Siloxane-containing epoxy resins derived from magnolol with low dielectric properties, excellent toughness, and flame retardancy
The entanglement disorder, highly polar groups and carbon-rich structure of conventional epoxy resins result in high dielectric constants and flammability, posing challenges to the development of high-frequency communications. Therefore, a silicone-containing active ester curing agent (FMAE) derived from magnolol was synthesized via a straightforward two-step process. And a thermosetting resin (FMAE/TGDDM) was then obtained by moisture self-cross-linking as well as curing epoxy N, N, N, N-tetraethoxypropyl-4, 4-diaminodiphenylmethane (TGDDM). The epoxy resin (MAE/TGDDM) cured by MAE that was not undergoing click chemistry was used for comparison. The results showed that the large volume of curing agents (31.86 Å × 14.98 Å × 9.03 Å for FMAE, 16.01 Å × 11.46 Å × 8.09 Å for MAE) and the absence of –OH enabled both resins to have excellent dielectric properties, especially FMAE/TGDDM, with a Dk of 2.78 and a Df of 0.0066 at 10 MHz. Additionally, FMAE/TGDDM demonstrated favorable impact resistance (43.9 kJ/m2) and lower hygroscopicity (0.56%) than MAE/TGDDM, which due to the introduction of siloxane chain (Si% = 7.08%) and the increase of the crosslinking density (2302 mol/cm3 vs 6751 mol/cm3). Furthermore, the charring rate of FMAE/TGDDM was 39.1%, almost twice that of MAE/TGDDM, and the PHHR and THR were 201.2 W/g and 22.6 kJ/g, 103.9% and 67.7% lower than MAE/TGDDM, respectively, proving that the intrinsic flame retardancy of FMAE/TGDDM. Hence, this paper provides a strategy to synergistically address the limitations of TGDDM and conventional epoxy resins for impact resistance, dielectric properties and flame retardancy through a simple structural design.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.