Emilie Laffont , Arnaud Valour , Nicolas Crespo-Monteiro , Pierre Berini , Yves Jourlin
{"title":"在强等离子光栅的光学开关配置中进行生物传感,实现差分参考检测","authors":"Emilie Laffont , Arnaud Valour , Nicolas Crespo-Monteiro , Pierre Berini , Yves Jourlin","doi":"10.1016/j.sbsr.2024.100681","DOIUrl":null,"url":null,"abstract":"<div><p>A deep gold-coated sinusoidal grating is proposed as a transducer for label-free real-time biosensing, operating in a new configuration based on the optical switch effect, which produces complementary optical outputs enabling differential and referenced detection. Biosensing experiments are reported for the first time on this platform, using immunoassays involving biospecific pairs consisting of bovine serum albumin and its antibody, and human serum albumin and its antibody. Direct and sandwich immunoassays are demonstrated along with negative controls. A limit of detection of 6 pg/mm<sup>2</sup> was obtained. A theoretical model correlating the variation in the differential referenced output optical signal with adlayer growth is presented and supports the experimental results. The proposed detection device operating in the optical switch configuration makes a promising case for point-of-care detection applications because the differential detection of two diffracted orders enables common noise suppression and robust interrogation.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"45 ","pages":"Article 100681"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000631/pdfft?md5=82c8610a8f58931ded96d3a1afb0d26f&pid=1-s2.0-S2214180424000631-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biosensing in the optical switch configuration on strong plasmonic gratings enabling differential referenced detection\",\"authors\":\"Emilie Laffont , Arnaud Valour , Nicolas Crespo-Monteiro , Pierre Berini , Yves Jourlin\",\"doi\":\"10.1016/j.sbsr.2024.100681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A deep gold-coated sinusoidal grating is proposed as a transducer for label-free real-time biosensing, operating in a new configuration based on the optical switch effect, which produces complementary optical outputs enabling differential and referenced detection. Biosensing experiments are reported for the first time on this platform, using immunoassays involving biospecific pairs consisting of bovine serum albumin and its antibody, and human serum albumin and its antibody. Direct and sandwich immunoassays are demonstrated along with negative controls. A limit of detection of 6 pg/mm<sup>2</sup> was obtained. A theoretical model correlating the variation in the differential referenced output optical signal with adlayer growth is presented and supports the experimental results. The proposed detection device operating in the optical switch configuration makes a promising case for point-of-care detection applications because the differential detection of two diffracted orders enables common noise suppression and robust interrogation.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"45 \",\"pages\":\"Article 100681\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000631/pdfft?md5=82c8610a8f58931ded96d3a1afb0d26f&pid=1-s2.0-S2214180424000631-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Biosensing in the optical switch configuration on strong plasmonic gratings enabling differential referenced detection
A deep gold-coated sinusoidal grating is proposed as a transducer for label-free real-time biosensing, operating in a new configuration based on the optical switch effect, which produces complementary optical outputs enabling differential and referenced detection. Biosensing experiments are reported for the first time on this platform, using immunoassays involving biospecific pairs consisting of bovine serum albumin and its antibody, and human serum albumin and its antibody. Direct and sandwich immunoassays are demonstrated along with negative controls. A limit of detection of 6 pg/mm2 was obtained. A theoretical model correlating the variation in the differential referenced output optical signal with adlayer growth is presented and supports the experimental results. The proposed detection device operating in the optical switch configuration makes a promising case for point-of-care detection applications because the differential detection of two diffracted orders enables common noise suppression and robust interrogation.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.