{"title":"利用 GEKO 湍流模型预测单轮喷流撞击的传热情况","authors":"Recep Yüksekdağ, Dilara Koçak, Utku Şentürk","doi":"10.1016/j.ijheatfluidflow.2024.109538","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional Reynolds-Averaged Navier–Stokes simulations are performed to study a single, round impinging jet heat transfer problem, utilizing the generalized k-omega (GEKO) turbulence model as a benchmark. The simulations are performed at a jet Reynolds number of 23,300 and a nozzle-to-plate distance of 2.0 where a second peak in surface Nusselt number is observed. The effects of the three primary (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi></mrow></msub></math></span>) and three auxiliary (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi><mo>,</mo><mi>s</mi><mi>u</mi><mi>b</mi></mrow></msub></math></span>) GEKO calibration parameters are investigated. The results indicate that <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub></math></span> has the most significant impact on the laminar-turbulent transition zone. A deep learning based regression model is developed and trained using the simulation outputs for fast predictions of the heat transfer curve. Using <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi><mo>,</mo><mi>s</mi><mi>u</mi><mi>b</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>25</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>=</mo><mn>3</mn><mo>.</mo><mn>0</mn></mrow></math></span> along with laminar-to-turbulent transitional modeling values, provides the best agreement with experimental results from previous studies.</p></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"109 ","pages":"Article 109538"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of heat transfer for a single round jet impingement using the GEKO turbulence model\",\"authors\":\"Recep Yüksekdağ, Dilara Koçak, Utku Şentürk\",\"doi\":\"10.1016/j.ijheatfluidflow.2024.109538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional Reynolds-Averaged Navier–Stokes simulations are performed to study a single, round impinging jet heat transfer problem, utilizing the generalized k-omega (GEKO) turbulence model as a benchmark. The simulations are performed at a jet Reynolds number of 23,300 and a nozzle-to-plate distance of 2.0 where a second peak in surface Nusselt number is observed. The effects of the three primary (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi></mrow></msub></math></span>) and three auxiliary (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi><mo>,</mo><mi>s</mi><mi>u</mi><mi>b</mi></mrow></msub></math></span>) GEKO calibration parameters are investigated. The results indicate that <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub></math></span> has the most significant impact on the laminar-turbulent transition zone. A deep learning based regression model is developed and trained using the simulation outputs for fast predictions of the heat transfer curve. Using <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi><mo>,</mo><mi>s</mi><mi>u</mi><mi>b</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>25</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>=</mo><mn>3</mn><mo>.</mo><mn>0</mn></mrow></math></span> along with laminar-to-turbulent transitional modeling values, provides the best agreement with experimental results from previous studies.</p></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"109 \",\"pages\":\"Article 109538\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X24002637\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24002637","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Prediction of heat transfer for a single round jet impingement using the GEKO turbulence model
Two-dimensional Reynolds-Averaged Navier–Stokes simulations are performed to study a single, round impinging jet heat transfer problem, utilizing the generalized k-omega (GEKO) turbulence model as a benchmark. The simulations are performed at a jet Reynolds number of 23,300 and a nozzle-to-plate distance of 2.0 where a second peak in surface Nusselt number is observed. The effects of the three primary (, and ) and three auxiliary (, and ) GEKO calibration parameters are investigated. The results indicate that has the most significant impact on the laminar-turbulent transition zone. A deep learning based regression model is developed and trained using the simulation outputs for fast predictions of the heat transfer curve. Using , , , and along with laminar-to-turbulent transitional modeling values, provides the best agreement with experimental results from previous studies.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.