利用 GEKO 湍流模型预测单轮喷流撞击的传热情况

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2024-08-22 DOI:10.1016/j.ijheatfluidflow.2024.109538
Recep Yüksekdağ, Dilara Koçak, Utku Şentürk
{"title":"利用 GEKO 湍流模型预测单轮喷流撞击的传热情况","authors":"Recep Yüksekdağ,&nbsp;Dilara Koçak,&nbsp;Utku Şentürk","doi":"10.1016/j.ijheatfluidflow.2024.109538","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional Reynolds-Averaged Navier–Stokes simulations are performed to study a single, round impinging jet heat transfer problem, utilizing the generalized k-omega (GEKO) turbulence model as a benchmark. The simulations are performed at a jet Reynolds number of 23,300 and a nozzle-to-plate distance of 2.0 where a second peak in surface Nusselt number is observed. The effects of the three primary (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi></mrow></msub></math></span>) and three auxiliary (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi><mo>,</mo><mi>s</mi><mi>u</mi><mi>b</mi></mrow></msub></math></span>) GEKO calibration parameters are investigated. The results indicate that <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub></math></span> has the most significant impact on the laminar-turbulent transition zone. A deep learning based regression model is developed and trained using the simulation outputs for fast predictions of the heat transfer curve. Using <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi><mo>,</mo><mi>s</mi><mi>u</mi><mi>b</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>25</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>=</mo><mn>3</mn><mo>.</mo><mn>0</mn></mrow></math></span> along with laminar-to-turbulent transitional modeling values, provides the best agreement with experimental results from previous studies.</p></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"109 ","pages":"Article 109538"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of heat transfer for a single round jet impingement using the GEKO turbulence model\",\"authors\":\"Recep Yüksekdağ,&nbsp;Dilara Koçak,&nbsp;Utku Şentürk\",\"doi\":\"10.1016/j.ijheatfluidflow.2024.109538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional Reynolds-Averaged Navier–Stokes simulations are performed to study a single, round impinging jet heat transfer problem, utilizing the generalized k-omega (GEKO) turbulence model as a benchmark. The simulations are performed at a jet Reynolds number of 23,300 and a nozzle-to-plate distance of 2.0 where a second peak in surface Nusselt number is observed. The effects of the three primary (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi></mrow></msub></math></span>) and three auxiliary (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi><mo>,</mo><mi>s</mi><mi>u</mi><mi>b</mi></mrow></msub></math></span>) GEKO calibration parameters are investigated. The results indicate that <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub></math></span> has the most significant impact on the laminar-turbulent transition zone. A deep learning based regression model is developed and trained using the simulation outputs for fast predictions of the heat transfer curve. Using <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>p</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mi>w</mi><mo>,</mo><mi>s</mi><mi>u</mi><mi>b</mi></mrow></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>25</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>f</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>=</mo><mn>3</mn><mo>.</mo><mn>0</mn></mrow></math></span> along with laminar-to-turbulent transitional modeling values, provides the best agreement with experimental results from previous studies.</p></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"109 \",\"pages\":\"Article 109538\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X24002637\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24002637","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用广义 k-omega (GEKO) 湍流模型作为基准,进行了二维雷诺平均纳维-斯托克斯模拟,以研究单个圆形撞击射流传热问题。模拟是在喷流雷诺数为 23,300 和喷嘴到板的距离为 2.0 时进行的,在该位置观察到了表面努塞尔特数的第二个峰值。研究了三个主要 GEKO 校准参数(Csep、Cmix 和 Cnw)和三个辅助参数(Cbf,l、Cbf,t 和 Cnw,sub)的影响。结果表明,Cmix 对层流-湍流过渡区的影响最大。利用模拟输出开发并训练了基于深度学习的回归模型,用于快速预测传热曲线。使用 Csep=1.1、Cmix=-0.7、Cnw=2.0、Cnw,sub=2.25 和 Cbf,t=3.0 以及层流-湍流过渡模型值,可提供与以往研究中实验结果的最佳一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of heat transfer for a single round jet impingement using the GEKO turbulence model

Two-dimensional Reynolds-Averaged Navier–Stokes simulations are performed to study a single, round impinging jet heat transfer problem, utilizing the generalized k-omega (GEKO) turbulence model as a benchmark. The simulations are performed at a jet Reynolds number of 23,300 and a nozzle-to-plate distance of 2.0 where a second peak in surface Nusselt number is observed. The effects of the three primary (Csep, Cmix and Cnw) and three auxiliary (Cbf,l, Cbf,t and Cnw,sub) GEKO calibration parameters are investigated. The results indicate that Cmix has the most significant impact on the laminar-turbulent transition zone. A deep learning based regression model is developed and trained using the simulation outputs for fast predictions of the heat transfer curve. Using Csep=1.1, Cmix=0.7, Cnw=2.0, Cnw,sub=2.25 and Cbf,t=3.0 along with laminar-to-turbulent transitional modeling values, provides the best agreement with experimental results from previous studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Pseudo three-dimensional topology optimization of chip heat sinks with various inlet–outlet arrangements Investigation of free and impinging jets using generalized k–ω (GEKO) turbulence model Preparation and characterization of modified steel slag-based composite phase change materials Hydrothermal performance enhancement of heat sink using low flow-drag twisted blade-like fins Thermal-hydrodynamic analysis for internally interrupted-finned tubes: Experimental, numerical and performance study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1