各向异性虚拟增益和复频激励对粒子散射的大幅调谐

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-08-21 DOI:10.1038/s42005-024-01772-w
Grigorios P. Zouros, Iridanos Loulas, Evangelos Almpanis, Alex Krasnok, Kosmas L. Tsakmakidis
{"title":"各向异性虚拟增益和复频激励对粒子散射的大幅调谐","authors":"Grigorios P. Zouros, Iridanos Loulas, Evangelos Almpanis, Alex Krasnok, Kosmas L. Tsakmakidis","doi":"10.1038/s42005-024-01772-w","DOIUrl":null,"url":null,"abstract":"Active tuning of the scattering of particles and metasurfaces is a highly sought-after property for a host of electromagnetic and photonic applications, but it normally requires challenging-to-control tunable (reconfigurable) or active (gain) media. Here, we introduce the concepts of anisotropic virtual gain and oblique Kerker effect, where a completely lossy anisotropic medium behaves exactly as its anisotropic gain counterpart upon excitation by a synthetic complex-frequency wave. The strategy allows one to largely tune the magnitude and angle of a particle’s scattering simply by changing the shape (envelope) of the incoming radiation, rather than by an involved medium-tuning mechanism. The so-attained anisotropic virtual gain enables directional super-scattering at an oblique direction with fine-management of the scattering angle. Our study is based on analytical techniques that allow multipolar decomposition of the scattered field in agreement with full-wave simulations, and lays the foundations for a light management method. The authors show how the use of suitable time-domain pulses, characterized by a complex frequency, can turn anisotropic losses to anisotropic virtual gain in small particles. These excitations can largely tune the scattering off particles without requiring any other tuning mechanism.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01772-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Anisotropic virtual gain and large tuning of particles’ scattering by complex-frequency excitations\",\"authors\":\"Grigorios P. Zouros, Iridanos Loulas, Evangelos Almpanis, Alex Krasnok, Kosmas L. Tsakmakidis\",\"doi\":\"10.1038/s42005-024-01772-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active tuning of the scattering of particles and metasurfaces is a highly sought-after property for a host of electromagnetic and photonic applications, but it normally requires challenging-to-control tunable (reconfigurable) or active (gain) media. Here, we introduce the concepts of anisotropic virtual gain and oblique Kerker effect, where a completely lossy anisotropic medium behaves exactly as its anisotropic gain counterpart upon excitation by a synthetic complex-frequency wave. The strategy allows one to largely tune the magnitude and angle of a particle’s scattering simply by changing the shape (envelope) of the incoming radiation, rather than by an involved medium-tuning mechanism. The so-attained anisotropic virtual gain enables directional super-scattering at an oblique direction with fine-management of the scattering angle. Our study is based on analytical techniques that allow multipolar decomposition of the scattered field in agreement with full-wave simulations, and lays the foundations for a light management method. The authors show how the use of suitable time-domain pulses, characterized by a complex frequency, can turn anisotropic losses to anisotropic virtual gain in small particles. These excitations can largely tune the scattering off particles without requiring any other tuning mechanism.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-6\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01772-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01772-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01772-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

主动调整粒子和元表面的散射是大量电磁和光子应用所渴求的特性,但通常需要具有挑战性的可调(可重构)或主动(增益)介质来控制。在这里,我们引入了各向异性虚拟增益和斜凯尔克效应的概念,即在合成复频波的激励下,完全损耗的各向异性介质表现与其各向异性增益介质完全相同。这种策略使人们只需改变传入辐射的形状(包络线),就能在很大程度上调整粒子散射的幅度和角度,而无需采用介质调整机制。由此获得的各向异性虚拟增益可以实现斜方向的定向超散射,并对散射角进行精细管理。我们的研究基于分析技术,可对散射场进行多极分解,与全波模拟一致,为光管理方法奠定了基础。作者展示了如何使用以复杂频率为特征的适当时域脉冲,将各向异性损失转化为小颗粒中的各向异性虚拟增益。这些激励可以在很大程度上调整粒子的散射,而不需要任何其他调整机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anisotropic virtual gain and large tuning of particles’ scattering by complex-frequency excitations
Active tuning of the scattering of particles and metasurfaces is a highly sought-after property for a host of electromagnetic and photonic applications, but it normally requires challenging-to-control tunable (reconfigurable) or active (gain) media. Here, we introduce the concepts of anisotropic virtual gain and oblique Kerker effect, where a completely lossy anisotropic medium behaves exactly as its anisotropic gain counterpart upon excitation by a synthetic complex-frequency wave. The strategy allows one to largely tune the magnitude and angle of a particle’s scattering simply by changing the shape (envelope) of the incoming radiation, rather than by an involved medium-tuning mechanism. The so-attained anisotropic virtual gain enables directional super-scattering at an oblique direction with fine-management of the scattering angle. Our study is based on analytical techniques that allow multipolar decomposition of the scattered field in agreement with full-wave simulations, and lays the foundations for a light management method. The authors show how the use of suitable time-domain pulses, characterized by a complex frequency, can turn anisotropic losses to anisotropic virtual gain in small particles. These excitations can largely tune the scattering off particles without requiring any other tuning mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Topological transition in filamentous cyanobacteria: from motion to structure Benchmarking the optimization of optical machines with the planted solutions Spontaneous flows and quantum analogies in heterogeneous active nematic films Quantum switch instabilities with an open control Time persistence of climate and carbon flux networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1