{"title":"使用与碳纳米管混合的压电聚合物薄膜进行汽车轮胎能量收集","authors":"J.R. Leppe-Nerey , F.Z. Sierra-Espinosa , M.E. Nicho","doi":"10.1016/j.nxener.2024.100177","DOIUrl":null,"url":null,"abstract":"<div><p>Energy harvesting through harnessing mobile cars is possible by combining mechanicals systems with advanced materials. Piezoelectric polymer blends with excellent mechanical properties facilitate energy harvesting using the car-tire as a source. Furthermore, by adding simplicity of preparation to the blends with multi-walled carbon nanotubes (MWCNT), an increase of energy conversion can lead to improved existing polyvinylidene fluoride/polymethylmethacrylate (PVDF/PMMA), films. This work focuses on investigating the best concentration of MWCNT to achieve car-tire energy harvesting as a sustainable and renewable energy option. The results show that 0.05 wt% of MWCNT is the best concentration among several values. A test set-up applying normal stress, simulating car-tire deformation indicated enhanced voltage generation. Compared to the energy consumption of combustion cars, the enriched films generate up to 4.3<!--> <!-->kWh. This energy is harvested over a car trip of 100 km. A higher nanotube concentration caused saturation of the blend film and poor output. The novel enriched polymer must be tested for resisting cyclic loads to encourage sustainable energy harvesting using car tires.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100177"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000826/pdfft?md5=9d99ce8cb96d07e5d2a3e803cba1cc41&pid=1-s2.0-S2949821X24000826-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Energy harvesting by car-tire using piezoelectric polymer films blended with carbon-nanotubes\",\"authors\":\"J.R. Leppe-Nerey , F.Z. Sierra-Espinosa , M.E. Nicho\",\"doi\":\"10.1016/j.nxener.2024.100177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy harvesting through harnessing mobile cars is possible by combining mechanicals systems with advanced materials. Piezoelectric polymer blends with excellent mechanical properties facilitate energy harvesting using the car-tire as a source. Furthermore, by adding simplicity of preparation to the blends with multi-walled carbon nanotubes (MWCNT), an increase of energy conversion can lead to improved existing polyvinylidene fluoride/polymethylmethacrylate (PVDF/PMMA), films. This work focuses on investigating the best concentration of MWCNT to achieve car-tire energy harvesting as a sustainable and renewable energy option. The results show that 0.05 wt% of MWCNT is the best concentration among several values. A test set-up applying normal stress, simulating car-tire deformation indicated enhanced voltage generation. Compared to the energy consumption of combustion cars, the enriched films generate up to 4.3<!--> <!-->kWh. This energy is harvested over a car trip of 100 km. A higher nanotube concentration caused saturation of the blend film and poor output. The novel enriched polymer must be tested for resisting cyclic loads to encourage sustainable energy harvesting using car tires.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"5 \",\"pages\":\"Article 100177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000826/pdfft?md5=9d99ce8cb96d07e5d2a3e803cba1cc41&pid=1-s2.0-S2949821X24000826-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy harvesting by car-tire using piezoelectric polymer films blended with carbon-nanotubes
Energy harvesting through harnessing mobile cars is possible by combining mechanicals systems with advanced materials. Piezoelectric polymer blends with excellent mechanical properties facilitate energy harvesting using the car-tire as a source. Furthermore, by adding simplicity of preparation to the blends with multi-walled carbon nanotubes (MWCNT), an increase of energy conversion can lead to improved existing polyvinylidene fluoride/polymethylmethacrylate (PVDF/PMMA), films. This work focuses on investigating the best concentration of MWCNT to achieve car-tire energy harvesting as a sustainable and renewable energy option. The results show that 0.05 wt% of MWCNT is the best concentration among several values. A test set-up applying normal stress, simulating car-tire deformation indicated enhanced voltage generation. Compared to the energy consumption of combustion cars, the enriched films generate up to 4.3 kWh. This energy is harvested over a car trip of 100 km. A higher nanotube concentration caused saturation of the blend film and poor output. The novel enriched polymer must be tested for resisting cyclic loads to encourage sustainable energy harvesting using car tires.