Berta Ordóñez , José Mediato , Timea Kovacs , Javier Martínez-Martínez , Paula Fernández-Canteli , Luis González-Menéndez , Sara Roces , Jhon Caicedo-Potosí , Begoña del Moral , Edgar Berrezueta
{"title":"对暴露于超临界二氧化碳的密封-储层系统进行地球化学实验评估:西班牙埃布罗盆地案例研究","authors":"Berta Ordóñez , José Mediato , Timea Kovacs , Javier Martínez-Martínez , Paula Fernández-Canteli , Luis González-Menéndez , Sara Roces , Jhon Caicedo-Potosí , Begoña del Moral , Edgar Berrezueta","doi":"10.1016/j.ijggc.2024.104233","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the effects of exposure to CO<sub>2</sub>-rich brine on sandstones and marls considered potential deep storage reservoir and seal in the Ebro Basin, Spain.</p><p>The experiment was conducted in a reactor under conditions of deep saline formations (pressure 8 MPa, temperature 313 K, exposure time 30 days, and CO<sub>2</sub>-supersaturated seawater ≈0.80 Mol). Both exposed and non-exposed samples were characterised by means of Optical Microscopy, Scanning Electronic Microscopy, X-ray Diffraction and Digital Image Analysis. Furthermore, powdered samples were analysed chemically trough X-ray Fluorescence, and brine samples were subjected to chemical analysis.</p><p>The petrographic study of adjacent sandstone samples before and after the exposure to CO<sub>2</sub>-rich brine indicates an increase in porosity (≈3 %). These changes in pore structure are the result of mineral dissolution (e.g., siliceous cement) and intergranular matrix detachment and its partial removal from the rock sample, representing the initial effects induced by the CO<sub>2</sub>-rich brine. The chemical analysis of the brine reveals an increase in Ca<sup>2+</sup> and SiO<sub>2</sub> composition (29 % and 6670 %, respectively). After marl exposure, the brine also exhibited increased Ca<sup>2+</sup>and SiO<sub>2</sub> content (95 % and 11,250 %, respectively), indicating the prevalence of dissolution processes.</p><p>These results suggest that in environments where CO<sub>2</sub> enriches the brine the mixture primarily induces localized chemical adjustments in the rocks (evidenced by dissolutions in the brine). The proposed methodology can be adapted for similar experimental batch tests in other storage structures.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"137 ","pages":"Article 104233"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1750583624001762/pdfft?md5=4230416b357cb8aba0f6688763e8d12c&pid=1-s2.0-S1750583624001762-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental geochemical assessment of a seal-reservoir system exposed to supercritical CO2: A case study from the Ebro Basin, Spain\",\"authors\":\"Berta Ordóñez , José Mediato , Timea Kovacs , Javier Martínez-Martínez , Paula Fernández-Canteli , Luis González-Menéndez , Sara Roces , Jhon Caicedo-Potosí , Begoña del Moral , Edgar Berrezueta\",\"doi\":\"10.1016/j.ijggc.2024.104233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the effects of exposure to CO<sub>2</sub>-rich brine on sandstones and marls considered potential deep storage reservoir and seal in the Ebro Basin, Spain.</p><p>The experiment was conducted in a reactor under conditions of deep saline formations (pressure 8 MPa, temperature 313 K, exposure time 30 days, and CO<sub>2</sub>-supersaturated seawater ≈0.80 Mol). Both exposed and non-exposed samples were characterised by means of Optical Microscopy, Scanning Electronic Microscopy, X-ray Diffraction and Digital Image Analysis. Furthermore, powdered samples were analysed chemically trough X-ray Fluorescence, and brine samples were subjected to chemical analysis.</p><p>The petrographic study of adjacent sandstone samples before and after the exposure to CO<sub>2</sub>-rich brine indicates an increase in porosity (≈3 %). These changes in pore structure are the result of mineral dissolution (e.g., siliceous cement) and intergranular matrix detachment and its partial removal from the rock sample, representing the initial effects induced by the CO<sub>2</sub>-rich brine. The chemical analysis of the brine reveals an increase in Ca<sup>2+</sup> and SiO<sub>2</sub> composition (29 % and 6670 %, respectively). After marl exposure, the brine also exhibited increased Ca<sup>2+</sup>and SiO<sub>2</sub> content (95 % and 11,250 %, respectively), indicating the prevalence of dissolution processes.</p><p>These results suggest that in environments where CO<sub>2</sub> enriches the brine the mixture primarily induces localized chemical adjustments in the rocks (evidenced by dissolutions in the brine). The proposed methodology can be adapted for similar experimental batch tests in other storage structures.</p></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"137 \",\"pages\":\"Article 104233\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1750583624001762/pdfft?md5=4230416b357cb8aba0f6688763e8d12c&pid=1-s2.0-S1750583624001762-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583624001762\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624001762","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental geochemical assessment of a seal-reservoir system exposed to supercritical CO2: A case study from the Ebro Basin, Spain
This paper studies the effects of exposure to CO2-rich brine on sandstones and marls considered potential deep storage reservoir and seal in the Ebro Basin, Spain.
The experiment was conducted in a reactor under conditions of deep saline formations (pressure 8 MPa, temperature 313 K, exposure time 30 days, and CO2-supersaturated seawater ≈0.80 Mol). Both exposed and non-exposed samples were characterised by means of Optical Microscopy, Scanning Electronic Microscopy, X-ray Diffraction and Digital Image Analysis. Furthermore, powdered samples were analysed chemically trough X-ray Fluorescence, and brine samples were subjected to chemical analysis.
The petrographic study of adjacent sandstone samples before and after the exposure to CO2-rich brine indicates an increase in porosity (≈3 %). These changes in pore structure are the result of mineral dissolution (e.g., siliceous cement) and intergranular matrix detachment and its partial removal from the rock sample, representing the initial effects induced by the CO2-rich brine. The chemical analysis of the brine reveals an increase in Ca2+ and SiO2 composition (29 % and 6670 %, respectively). After marl exposure, the brine also exhibited increased Ca2+and SiO2 content (95 % and 11,250 %, respectively), indicating the prevalence of dissolution processes.
These results suggest that in environments where CO2 enriches the brine the mixture primarily induces localized chemical adjustments in the rocks (evidenced by dissolutions in the brine). The proposed methodology can be adapted for similar experimental batch tests in other storage structures.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.